×

Groundstates and infinitely many high energy solutions to a class of nonlinear Schrödinger-Poisson systems. (English) Zbl 1479.35782

Summary: We study a nonlinear Schrödinger-Poisson system which reduces to the nonlinear and nonlocal PDE \[ - \Delta u+ u + \lambda^2 \left( \frac{1}{\omega |x|^{N-2}}\star \rho u^2\right) \rho (x) u = |u|^{q-1} u \quad x \in\mathbb{R}^N, \] where \(\omega = (N-2)|\mathbb{S}^{N-1} |\), \(\lambda >0\), \(q\in (1,2^* -1)\), \(\rho :\mathbb{R}^N \rightarrow\mathbb{R}\) is nonnegative, locally bounded, and possibly non-radial, \(N=3,4,5\) and \(2^*=2N/(N-2)\) is the critical Sobolev exponent. In our setting \(\rho\) is allowed as particular scenarios, to either (1) vanish on a region and be finite at infinity, or (2) be large at infinity. We find least energy solutions in both cases, studying the vanishing case by means of a priori integral bounds on the Palais-Smale sequences and highlighting the role of certain positive universal constants for these bounds to hold. Within the Ljusternik-Schnirelman theory we show the existence of infinitely many distinct pairs of high energy solutions, having a min-max characterisation given by means of the Krasnoselskii genus. Our results cover a range of cases where major loss of compactness phenomena may occur, due to the possible unboundedness of the Palais-Smale sequences, and to the action of the group of translations.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J20 Variational methods for second-order elliptic equations
35J60 Nonlinear elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

References:

[1] Ambrosetti, A., On Schrödinger-Poisson systems, Milan J. Math., 76, 257-274 (2008) · Zbl 1181.35257 · doi:10.1007/s00032-008-0094-z
[2] Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems on \({\mathbb{R}}^n\). In: Progress in Mathematics, 240. Birkhäuser Verlag, Basel (2006) · Zbl 1115.35004
[3] Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems. Cambridge University Press (2007) · Zbl 1125.47052
[4] Ambrosetti, A.; Rabinowitz, PH, Dual variational methods in critical point theory and its applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[5] Ambrosetti, A.; Ruiz, D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math, 10, 391-404 (2008) · Zbl 1188.35171 · doi:10.1142/S021919970800282X
[6] Bartsch, T.; Wang, Z-Q, Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}}^N\), Commun. Partial Differ. Equ., 20, 9-10, 1725-1741 (1995) · Zbl 0837.35043 · doi:10.1080/03605309508821149
[7] Bellazzini, J.; Frank, R.; Visciglia, N., Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems, Mat. Ann., 360, 3-4, 653-673 (2014) · Zbl 1320.46026 · doi:10.1007/s00208-014-1046-2
[8] Bellazzini, J.; Ghimenti, M.; Mercuri, C.; Moroz, V.; Van Schaftingen, J., Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces, Trans. AMS, 370, 11, 8285-8310 (2018) · Zbl 1406.46023 · doi:10.1090/tran/7426
[9] Bao, W.; Mauser, NJ; Stimming, HP, Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson-\(X\alpha\) model, Commun. Math. Sci, 1, 4, 809-828 (2003) · Zbl 1160.81497 · doi:10.4310/CMS.2003.v1.n4.a8
[10] Benci, V.; Cerami, G., Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rat. Mech. Anal., 99, 283-300 (1987) · Zbl 0635.35036 · doi:10.1007/BF00282048
[11] Benci, V., Fortunato, D.: Variational methods in nonlinear field equations. Solitary waves, hylomorphic solitons and vortices. Springer Monographs in Mathematics. Springer, Cham (2014) · Zbl 1312.35001
[12] Benedek, A.; Panzone, R., The space \(L^p\) with mixed norm, Duke Math. J., 28, 301-324 (1961) · Zbl 0107.08902 · doi:10.1215/S0012-7094-61-02828-9
[13] Berestycki, H.; Lions, PL, Nonlinear scalar field equations, I and II, Arch. Rational Mech. Anal., 82, 313-375 (1983) · Zbl 0533.35029 · doi:10.1007/BF00250555
[14] Boas, RP Jr, Some uniformly convex spaces, Bull. Am. Math. Soc., 46, 304-311 (1940) · JFM 66.0533.03 · doi:10.1090/S0002-9904-1940-07207-6
[15] Bokanowski, O.; López, JL; Soler, J., On an exchange interaction model for quantum transport: the Schrödinger-Poisson-Slater system, Math. Models Methods Appl. Sci., 13, 10, 1397-1412 (2003) · Zbl 1073.35188 · doi:10.1142/S0218202503002969
[16] Bonheure, D., Di Cosmo, J., Mercuri, C.: Concentration on circles for nonlinear Schrödinger-Poisson systems with unbounded potentials vanishing at infinity. Commun. Contemp. Math. 14(2) (2012) · Zbl 1250.35077
[17] Bonheure, D.; Mercuri, C., Embedding theorems and existence results for nonlinear Schrödinger-Poisson systems with unbounded and vanishing potentials, J. Differ. Equ., 251, 1056-1085 (2011) · Zbl 1223.35130 · doi:10.1016/j.jde.2011.04.010
[18] Brezis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 3, 486-490 (1983) · Zbl 0526.46037 · doi:10.2307/2044999
[19] Brezis, H.: Functional analysis. In: Sobolev Spaces and Partial Differential Equations. Springer (2011) · Zbl 1220.46002
[20] Catto, I.; Dolbeault, J.; Sanchez, O.; Soler, J., Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle, Math. Models Methods Appl. Sci., 23, 10, 1915-1938 (2013) · Zbl 1283.35117 · doi:10.1142/S0218202513500541
[21] Cerami, G.; Molle, R., Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29, 3103-3119 (2016) · Zbl 1408.35022 · doi:10.1088/0951-7715/29/10/3103
[22] Cerami, G., Molle, R.: Multiple positive bound states for critical Schrödinger-Poisson systems. ESAIM Control Optim. Calc. Var. 25 pp. 73, 29 pp (2019) · Zbl 1437.35252
[23] Cerami, G.; Vaira, G., Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248, 521-543 (2010) · Zbl 1183.35109 · doi:10.1016/j.jde.2009.06.017
[24] Costa, DG, An Invitation to Variational Methods in Differential Equations (2007), Boston: Birkhäuser, Boston · Zbl 1123.35001 · doi:10.1007/978-0-8176-4536-6
[25] D’Aprile, T.; Mugnai, D., Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4, 3, 307-322 (2004) · Zbl 1142.35406 · doi:10.1515/ans-2004-0305
[26] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 3, 397-408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[27] Gel’fand, M., Shilov, G.E.: Properties and Operations. In: Generalized Functions, vol. I. Academic Press, New York and London (1964) · Zbl 0115.33101
[28] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order (1983), New York: Springer, New York · Zbl 0562.35001
[29] Hájek, P.; Santalucía, VM; Vanderwerff, J.; Zizler, V., Biorthogonal Systems in Banach Spaces (2008), New York: Springer, New York · Zbl 1136.46001
[30] Jeanjean, L., On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer type problem set on \({\mathbb{R}}^N\), Proc. Roy. Soc. Edinb., 129, 787-809 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[31] Jeanjean, L.; Tanaka, K., A positive solution for a nonlinear Schrödinger equation on \({\mathbb{R}}^N\), Indiana Univ. Math. J., 54, 2, 443-464 (2005) · Zbl 1143.35321 · doi:10.1512/iumj.2005.54.2502
[32] Kwong, M., Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbb{R}}^n\), Arch. Rat. Mech. Anal., 105, 243-266 (1989) · Zbl 0676.35032 · doi:10.1007/BF00251502
[33] Lieb, EH; Loss, M., Analysis (2001), Rhode Island: American Mathematical Society, Rhode Island · Zbl 0966.26002
[34] Lions, PL, Some remarks on Hartree equation, Nonlinear Anal., 5, 11, 1245-1256 (1981) · Zbl 0472.35074 · doi:10.1016/0362-546X(81)90016-X
[35] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. H. Poincairé Anal. Non Linéaire 1, pp. 109-145 and 223-283 (1984) · Zbl 0541.49009
[36] Lions, PL, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109, 1, 33-97 (1987) · Zbl 0618.35111 · doi:10.1007/BF01205672
[37] Mauser, NJ, The Schrödinger-Poisson-\(X\alpha\) equation, Appl. Math. Lett., 14, 6, 759-763 (2001) · Zbl 0990.81024 · doi:10.1016/S0893-9659(01)80038-0
[38] Mercuri, C.: Positive solutions of nonlinear Schrödinger-Poisson systems with radial potentials vanishing at infinity. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19(3), 211-227 (2008) · Zbl 1200.35098
[39] Mercuri, C.; Moroz, V.; Van Schaftingen, J., Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial Differ. Equ., 55, 6, 1-58 (2016) · Zbl 1406.35365 · doi:10.1007/s00526-016-1079-3
[40] Mercuri, C.; Tyler, TM, On a class of nonlinear Schrödinger-Poisson systems involving a nonradial charge density, Rev. Mat. Iberoam., 36, 4, 1021-1070 (2020) · Zbl 1460.35124 · doi:10.4171/rmi/1158
[41] Mercuri, C.; Willem, M., A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete Contin. Dyn. Syst., 28, 2, 469-493 (2010) · Zbl 1193.35051 · doi:10.3934/dcds.2010.28.469
[42] Montenegro, M., Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal., 37, 4, 431-448 (1999) · Zbl 0930.35074 · doi:10.1016/S0362-546X(98)00057-1
[43] Opick, L., Kufner, A., John, O., Fučík, S.: Function Spaces, vol. 1, 2nd edn. De Gruyter, Berlin/Boston (2012)
[44] Rabinowitz, P., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 2, 229-266 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[45] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 655-674 (2006) · Zbl 1136.35037 · doi:10.1016/j.jfa.2006.04.005
[46] Ruiz, D., On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases, Arch. Rat. Mech. Anal., 198, 349-368 (2010) · Zbl 1235.35232 · doi:10.1007/s00205-010-0299-5
[47] Slater, J., A simplification of the Hartree-Fock Method, Phys. Rev., 81, 385-390 (1951) · Zbl 0042.23202 · doi:10.1103/PhysRev.81.385
[48] Strauss, W., Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 2, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[49] Struwe, M., On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helvetici, 60, 558-581 (1985) · Zbl 0595.58013 · doi:10.1007/BF02567432
[50] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2008), Berlin: Springer, Berlin · Zbl 1284.49004
[51] Sun, J.; Wu, T.; Feng, Z., Non-autonomous Schrödinger-Poisson System in \({\mathbb{R}}^3\), Discrete Contin. Dyn. Syst., 38, 4, 1889-1933 (2018) · Zbl 1398.35093 · doi:10.3934/dcds.2018077
[52] Szulkin, A., Ljusternik-Schnirelmann theory on \(C^1\)-manifolds, Ann. Inst. Henri Poincaré, 5, 2, 119-139 (1988) · Zbl 0661.58009 · doi:10.1016/S0294-1449(16)30348-1
[53] Willem, M., Minimax Theorems (1996), Boston: Birkhäuser, Boston · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.