×

Erlang mixture modeling for Poisson process intensities. (English) Zbl 1477.62010

Summary: We develop a prior probability model for temporal Poisson process intensities through structured mixtures of Erlang densities with common scale parameter, mixing on the integer shape parameters. The mixture weights are constructed through increments of a cumulative intensity function which is modeled nonparametrically with a gamma process prior. Such model specification provides a novel extension of Erlang mixtures for density estimation to the intensity estimation setting. The prior model structure supports general shapes for the point process intensity function, and it also enables effective handling of the Poisson process likelihood normalizing term resulting in efficient posterior simulation. The Erlang mixture modeling approach is further elaborated to develop an inference method for spatial Poisson processes. The methodology is examined relative to existing Bayesian nonparametric modeling approaches, including empirical comparison with Gaussian process prior based models, and is illustrated with synthetic and real data examples.

MSC:

62-08 Computational methods for problems pertaining to statistics
62M30 Inference from spatial processes
62G05 Nonparametric estimation
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Software:

GSM; lgcp; INLA

References:

[1] Adams, R.P., Murray, I., MacKay, D.J.C.: Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. In: Proceedings of the 26th International Conference on Machine Learning. Montreal, Canada (2009)
[2] Andrews, DF; Herzberg, AM, Data, A Collection of Problems from Many Fields for the Student and Research Worker (1985), Berlin: Springer, Berlin · Zbl 0567.62002
[3] Brix, A.; Diggle, PJ, Spatiotemporal prediction for log-Gaussian Cox processes, J. Roy. Stat. Soc. B, 63, 823-841 (2001) · Zbl 0996.62076 · doi:10.1111/1467-9868.00315
[4] Brix, A.; Møller, J., Space-time multi type log Gaussian Cox processes with a view to modelling weeds, Scand. J. Stat., 28, 471-488 (2001) · Zbl 0981.62079 · doi:10.1111/1467-9469.00249
[5] Butzer, PL, On the extensions of Bernstein polynomials to the infinite interval, Proc. Am. Math. Soc., 5, 547-553 (1954) · Zbl 0056.28703 · doi:10.1090/S0002-9939-1954-0063483-7
[6] Daley, DJ; Vere-Jones, D., An Introduction to the Theory of Point Processes (2003), Berlin: Springer, Berlin · Zbl 1026.60061
[7] Diggle, PJ, Statistical Analysis of Spatial and Spatio-Temporal Point Paterterns (2014), Boca Raton: CRC Press, Boca Raton · Zbl 1435.62004
[8] Ferguson, TS, A Bayesian analysis of some nonparametric problems, Ann. Stat., 1, 209-230 (1973) · Zbl 0255.62037 · doi:10.1214/aos/1176342360
[9] Ghosal, S.; van der Vaart, A., Fundamentals of Nonparametric Bayesian Inference (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1376.62004 · doi:10.1017/9781139029834
[10] Hawkes, AG, Point spectra of some mutually exciting point processes, J. Roy. Stat. Soc. B, 33, 3, 438-443 (1971) · Zbl 0238.60094
[11] Heikkinen, J.; Arjas, E., Non-parametric Bayesian estimation of a spatial Poisson intensity, Scand. J. Stat., 25, 435-450 (1998) · Zbl 0921.62034 · doi:10.1111/1467-9469.00114
[12] Heikkinen, J.; Arjas, E., Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach, Biometrics, 55, 738-745 (1999) · Zbl 1059.62743 · doi:10.1111/j.0006-341X.1999.00738.x
[13] Illian, JB; Sørbye, SH; Rue, H., A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA), Ann. Appl. Stat., 6, 1499-1530 (2012) · Zbl 1257.62093 · doi:10.1214/11-AOAS530
[14] Ishwaran, H.; James, LF, Computational methods for multiplicative intensity models using weighted gamma processes: proportional hazards, marked point processes, and panel count data, J. Am. Stat. Assoc., 99, 175-190 (2004) · Zbl 1089.62520 · doi:10.1198/016214504000000179
[15] Kalbfleisch, JD, Non-parametric Bayesian analysis of survival time data, J. Roy. Stat. Soc. B, 40, 214-221 (1978) · Zbl 0387.62030
[16] Kang, J.; Nichols, TE; Wager, TD; Johnson, TD, A Bayesian hierarchical spatial point process model for multi-type neuroimaging meta-analysis, Ann. Appl. Stat., 8, 1800-1824 (2014) · Zbl 1304.62133 · doi:10.1214/14-AOAS757
[17] Kingman, JFC, Poisson Processes (1993), Oxford: Clarendon Press, Oxford · Zbl 0771.60001
[18] Kottas, A.: Dirichlet process mixtures of Beta distributions, with applications to density and intensity estimation. In: Proceedings of the Workshop on Learning with Nonparametric Bayesian Methods, 23rd International Conference on Machine Learning, Pittsburgh, PA, USA (2006)
[19] Kottas, A.; Behseta, S.; Moorman, D.; Poynor, V.; Olson, C., Bayesian nonparametric analysis of neuronal intensity rates, J. Neurosci. Methods, 203, 241-253 (2012) · doi:10.1016/j.jneumeth.2011.09.017
[20] Kottas, A.; Sansó, B., Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis, J. Stat. Plan. Inference, 137, 3151-3163 (2007) · Zbl 1114.62100 · doi:10.1016/j.jspi.2006.05.022
[21] Lee, SCK; Lin, XS, Modeling and evaluating insurance losses via mixtures of Erlang distributions, N. Am. Actuar. J., 14, 107-130 (2010) · doi:10.1080/10920277.2010.10597580
[22] Lo, AY, Bayesian nonparametric statistical inference for Poisson point processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 59, 55-66 (1982) · Zbl 0482.62078 · doi:10.1007/BF00575525
[23] Lo, AY, Bayesian inference for Poisson process models with censored data, J. Nonparametric Stat., 2, 71-80 (1992) · Zbl 1360.62441 · doi:10.1080/10485259208832544
[24] Lo, AY; Weng, CS, On a class of Bayesian nonparametric estimates: ii. Hazard rate estimates, Ann. Inst. Stat. Math., 41, 227-245 (1989) · Zbl 0716.62043 · doi:10.1007/BF00049393
[25] Møller, J.; Syversveen, AR; Waagepetersen, RP, Log Gaussian Cox processes, Scand. J. Stat., 25, 451-482 (1998) · Zbl 0931.60038 · doi:10.1111/1467-9469.00115
[26] Petrone, S., Bayesian density estimation using Bernstein polynomials, Can. J. Stat., 27, 105-126 (1999) · Zbl 0929.62044 · doi:10.2307/3315494
[27] Petrone, S., Random Bernstein polynomials, Scand. J. Stat., 26, 373-393 (1999) · Zbl 0939.62046 · doi:10.1111/1467-9469.00155
[28] Rodrigues, A.; Diggle, PJ, Bayesian estimation and prediction for inhomogeneous spatiotemporal log-Gaussian Cox processes using low-rank models, with application to criminal surveillance, J. Am. Stat. Assoc., 107, 93-101 (2012) · Zbl 1261.62086 · doi:10.1080/01621459.2011.644496
[29] Rodriguez, A.; Wang, Z.; Kottas, A., Assessing systematic risk in the S&P500 index between 2000 and 2011: a Bayesian nonparametric approach, Ann. Appl. Stat., 11, 527-552 (2017) · Zbl 1416.62591 · doi:10.1214/16-AOAS987
[30] Simpson, D., Illian, J.B., Lindgren, F., Sørbye, S.H., Rue, H.: Going off grid: computationally efficient inference for log-Gaussian Cox processes. Biometrika 103, 49-70 (2016) · Zbl 1452.62704
[31] Taddy, M., Autoregressive mixture models for dynamic spatial Poisson processes: application to tracking the intensity of violent crime, J. Am. Stat. Assoc., 105, 1403-1417 (2010) · Zbl 1388.62379 · doi:10.1198/jasa.2010.ap09655
[32] Taddy, MA; Kottas, A., Mixture modeling for marked Poisson processes, Bayesian Anal., 7, 335-362 (2012) · Zbl 1330.62200 · doi:10.1214/12-BA711
[33] Taylor, B.; Davies, T.; Rowlingson, B.; Diggle, P., lgcp: an R package for inference with spatial and spatio-temporal log-Gaussian Cox processes, J. Stat. Softw., 52, 1-40 (2013) · doi:10.18637/jss.v052.i04
[34] Venturini, S.; Dominici, F.; Parmigiani, G., Gamma shape mixtures for heavy-tailed distributions, Ann. Appl. Stat., 2, 756-776 (2008) · Zbl 1400.62292 · doi:10.1214/07-AOAS156
[35] Wolpert, RL; Ickstadt, K., Poisson/gamma random field models for spatial statistics, Biometrika, 85, 251-267 (1998) · Zbl 0951.62082 · doi:10.1093/biomet/85.2.251
[36] Xiao, S.; Kottas, A.; Sansó, B., Modeling for seasonal marked point processes: an analysis of evolving hurricane occurrences, Ann. Appl. Stat., 9, 353-382 (2015) · Zbl 1454.62284 · doi:10.1214/14-AOAS796
[37] Xiao, S.; Kottas, A.; Sansó, B.; Kim, H., Nonparametric Bayesian modeling and estimation for renewal processes, Technometrics, 63, 100-115 (2021) · doi:10.1080/00401706.2019.1693428
[38] Zhao, C., Kottas, A.: Modeling for Poisson process intensities over irregular spatial domains. arXiv:2106.04654 [stat.ME] (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.