×

The deviation factor and divergences in quantum electrodynamics, concrete examples. (English) Zbl 1476.81147

Summary: We consider the divergences in quantum electrodynamics. Our approach is based on ideas from the theory of generalized wave operators. In particular, we use the concept of the deviation factor. The deviation factor characterizes the deviations of the initial and final waves from the free waves. The approach is demonstrated on important examples.

MSC:

81V10 Electromagnetic interaction; quantum electrodynamics
81T13 Yang-Mills and other gauge theories in quantum field theory
81U20 \(S\)-matrix theory, etc. in quantum theory
40A05 Convergence and divergence of series and sequences
60F05 Central limit and other weak theorems

References:

[1] Akhiezer, A. I.; Berestetskii, V. B., Quantum Electrodynamics (1965), Interscience Publishers: Interscience Publishers New York · Zbl 0084.45004
[2] Buslaev, V. S.; Matveev, V. B., Wave operators for the Schrödinger equation with a slowly decreasing potential, Teor. Mat. Fiz., 2, 3, 367-376 (1970)
[3] Collins, J. C., Renormalization (1984), Cambridge University Press · Zbl 1094.53505
[4] Dollard, J. D., Asymptotic convergence and the Coulomb interaction, J. Math. Phys., 5, 6, 729-738 (1964)
[5] Duhr, C., Scattering amplitudes, Feynman integrals and multiple polylogarithms, Contemp. Math., 648, 109-133 (2015) · Zbl 1346.81046
[6] Dyson, F. J., The S matrix in quantum electrodynamics, Phys. Rev., 75, 11, 1736-1755 (1949) · Zbl 0033.14201
[7] Kubo, R., Relation between the Kulish-Faddeev model and Grammer-Yennie perturbation theory in the infrared problem in quantum electrodynamics, Prog. Theor. Phys., 73, 5, 1235-1244 (1985)
[8] Kulish, P. P.; Faddeev, L. D., Asymptotic conditions and infrared divergences in quantum electrodynamics, (Fifty Years of Mathematical Physics. Fifty Years of Mathematical Physics, World Sci. Ser. 21st Century Math., vol. 2 (2016), World Sci. Publ.: World Sci. Publ. Hackensack, NJ). (Fifty Years of Mathematical Physics. Fifty Years of Mathematical Physics, World Sci. Ser. 21st Century Math., vol. 2 (2016), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), Teor. Mat. Fiz., 4, 2, 153-170 (1970), Translation of · Zbl 0197.26201
[9] Levy, M., Wave equations in momentum space, Proc. R. Soc. Lond. Ser. A, 204, 145-169 (1950) · Zbl 0041.12702
[10] Oppenheimer, J. R., (Report for the Solvay Conference on Physics at Brussels, Belgium (1948)), 145-153
[11] Pearson, D. B., Quantum Scattering and Spectral Theory (1988), Academic Press: Academic Press New York · Zbl 0673.47011
[12] Pokorski, S., Gauge Field Theories (1987), Cambridge University Press · Zbl 0637.53103
[13] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, III: Scattering Theory (1979), Academic Press: Academic Press New York · Zbl 0405.47007
[14] Sakhnovich, L. A., Dissipative operators with absolutely continuous spectrum, Tr. Mosk. Mat. O.-va. Tr. Mosk. Mat. O.-va, Trans. Mosc. Math. Soc., 19, 223-297 (1968), Translated in · Zbl 0193.43403
[15] Sakhnovich, L. A., Generalized wave operators, Mat. Sb. (N.S.). Mat. Sb. (N.S.), Math. USSR Sb., 10, 2, 197-216 (1970), Translated in · Zbl 0215.21001
[16] Sakhnovich, L. A., Generalized wave operators and regularization of perturbation series, Teor. Mat. Fiz.. Teor. Mat. Fiz., Theor. Math. Phys., 2, 1, 60-65 (1970), Translated in
[17] Sakhnovich, L. A., The invariance principle for generalized wave operators, Funkc. Anal. Prilozh.. Funkc. Anal. Prilozh., Funct. Anal. Appl., 5, 1, 49-55 (1971), Translated in · Zbl 0234.47003
[18] Sakhnovich, L. A., Generalized wave operators, dynamical and stationary cases and divergence problem (2016)
[19] Sakhnovich, L. A., Stationary and dynamical scattering problems and ergodic-type theorems, Phys. Lett. A, 381, 36, 3021-3027 (2017) · Zbl 1375.81235
[20] Sakhnovich, L. A., The generalized scattering problems: ergodic type theorems, Complex Anal. Oper. Theory, 12, 3, 767-776 (2018) · Zbl 1390.34238
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.