×

Fluid statics of a self-gravitating perfect-gas isothermal sphere. (English) Zbl 1476.76062

Summary: We open the paper with introductory considerations describing the motivations of our long-term research plan targeting gravitomagnetism, illustrating the fluid-dynamics numerical test case selected for that purpose, that is, a perfect-gas sphere contained in a solid shell located in empty space sufficiently away from other masses, and defining the main objective of this study: the determination of the gravitofluid-static field required as initial field \((t = 0)\) in forthcoming fluid-dynamics calculations. The determination of the gravitofluid-static field requires the solution of the isothermal-sphere Lane-Emden equation. We do not follow the habitual approach of the literature based on the prescription of the central density as boundary condition; we impose the gravitational field at the solid-shell internal wall. As the discourse develops, we point out differences and similarities between the literature’s and our approach. We show that the nondimensional formulation of the problem hinges on a unique physical characteristic number that we call gravitational number because it gauges the self-gravity effects on the gas’ fluid statics. We illustrate and discuss numerical results; some peculiarities, such as gravitational-number upper bound and multiple solutions, lead us to investigate the thermodynamics of the physical system, particularly entropy and energy, and preliminarily explore whether or not thermodynamic-stability reasons could provide justification for either selection or exclusion of multiple solutions. We close the paper with a summary of the present study in which we draw conclusions and describe future work.

MSC:

76N15 Gas dynamics (general theory)
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] Heras, J., Can Maxwell’s equations be obtained from the continuity equation?, Amer. J. Phys., 75, 7, 652-657 (2007) · Zbl 1219.78023
[2] Heras, J., How to obtain the covariant form of Maxwell’s equations from the continuity equation, Eur. J. Phys., 30, 845-854 (2009) · Zbl 1170.78321
[3] Nyambuya, G. G., Fundamental physical basis for Maxwell-Heaviside gravitomagnetism, J. Mod. Phys., 6, 9, 1207-1219 (2015)
[4] López, G., On Maxwell equations for gravitational field, J. Appl. Math. Phys., 6, 932-947 (2018)
[5] Sattinger, D., On the universality of Maxwell’s equations, Mon.hefte Math., 186, 3, 503-523 (2018) · Zbl 1443.83009
[6] Maxwell, J. C., A dynamical theory of the electromagnetic theory, Philos. Trans. R. Soc. Lond., 155, 459-512 (1865)
[7] Holzmüller, G., Ueber die Anwendung der Jacobi-Hamilton’schen Methode auf den Fall der Anziehung nach dem elektrodynamischen Gesetze von Weber, Z. Math. Phys., 15, 2, 69-91 (1870) · JFM 02.0695.03
[8] Tisserand, F., Sur le mouvement des planètes autour du soleil, d’aprè la loi électrodynamique de Weber, C. R. Hebd. Séances Acad. Sci., 75, 760-763 (1872) · JFM 04.0465.01
[9] Tisserand, F., Sur les mouvements des planètes, en supposant l’attraction représentée par l’une des lois électrodynamiques de Gauss ou de Weber, C. R. Hebd. Séances Acad. Sci., 110, 313-315 (1890) · JFM 22.1210.01
[10] Heaviside, O., A gravitational and electromagnetic analogy. Part I, Electrician, 31, 281-282 (1893)
[11] Heaviside, O., A gravitational and electromagnetic analogy. Part II, Electrician, 31, 359 (1893)
[12] Heaviside, O., Electromagnetic Theory, Vol. 1 (1971), Chealsea Publishing Company: Chealsea Publishing Company New York NY, original published in 1893 · JFM 30.0801.03
[13] Lorentz, H. A., Beschouwingen over de zwaartekracht, Verslag van de Gewone Vergaderingen der Wis- en Natuurkundige Afdeeling, K. Akad. Wet. Amsterdam, 8, 603-620 (1900)
[14] Lorentz, H. A., Considerations on gravitation, Proc. Sect. Sci. K. Akad. Wet. Amsterdam, 2, 559-574 (1900) · JFM 31.0748.01
[15] Poincaré, H., Sur la dynamique de l’électron, C. R. Hebd. Séances Acad. Sci., CXL, 1, 1504-1508 (1905) · JFM 36.0911.02
[16] Poincaré, H., Sur la dynamique de l’électron, Rend. Circ. Mat. Palermo (2), 21, 1, 129-175 (1906) · JFM 37.0886.01
[17] Einstein, A., Gibt es eine Gravitationswirkung die, der elektrodynamischen Induktionswirkung analog ist?, (Vierteljahrsschrift für gerichtliche Medizin und öffentliches Sanitätswesen, Vol. 44 (1912)), 37-40, includes English translation. URL https://einsteinpapers.press.princeton.edu/vol4-doc/196
[18] Nordström, G., Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen, Phys. Z., 15, 504-506 (1914) · JFM 45.1125.01
[19] G. Nordström, Zur Elektrizitäts- und Gravitationstheorie, Öfversigt af Finska Vetenskaps-Societetens Förhandlingar LVII (A4) (1914-1915) 1-15.
[20] Abraham, M., Neuere Gravitationstheorien, Jahrbuch Radioaktivität Elektron., 11, 470-520 (1915)
[21] Abraham, M., Recent theories of gravitation, (Renn, J.; Schemmel, M., The Genesis of General Relativity. Vol. 3. The Genesis of General Relativity. Vol. 3, Boston Studies in the Philosophy of Science, vol. 250 (2007), Springer, Dordrecht, The Netherlands), 363-410, English translation of original article [Jahrbuch der Radioaktivität und Elektronik 11, 470-520 (1915)]
[22] Thirring, H., Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie, Phys. Z., 19, 3, 33-39 (1918) · JFM 46.1316.03
[23] Lense, J.; Thirring, H., Über den einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Phys. Z., 19, 156-163 (1918) · JFM 46.1317.01
[24] Thirring, H., Über die formale Analogie zwischen den elektromagnetischen Grundgleichungen und den Einsteinschen Gravitationsgleichungen erster Näherung, Phys. Z., 19, 204-205 (1918) · JFM 46.1352.01
[25] Thirring, H., On the formal analogy between the basic electromagnetic equations and Einstein’s gravity equations in first approximation, Gen. Relativity Gravitation, 44, 3226-3229 (2012), republication in English of the original paper [Physikalische Zeitschrift 19, 204-205 (1918)] · Zbl 1256.83006
[26] Forward, R., General relativity for the experimentalist, Proc. Inst. Radio Eng., 49, 5, 892-904 (1961)
[27] Braginsky, V.; Caves, C.; Thorne, K., Laboratory experiments to test relativistic gravity, Phys. Rev. D, 15, 8, 2047-2068 (1977)
[28] Rindler, W., (Essential Relativity. Essential Relativity, Texts and Monographs in Physics (1977), Springer-Verlag: Springer-Verlag New York NY) · Zbl 1063.83500
[29] Bedford, D.; Krumm, P., On relativistic gravitation, Amer. J. Phys., 53, 9, 889-890 (1985)
[30] Krumm, P.; Bedford, D., The gravitational Poynting vector and energy transfer, Amer. J. Phys., 55, 4, 362-363 (1987)
[31] Kolbenstvedt, H., Gravomagnetism in special relativity, Amer. J. Phys., 56, 6, 523-524 (1988)
[32] Harris, E., Analogy between general relativity and electromagnetism for slowly moving particles in weak gravitational fields, Amer. J. Phys., 59, 5, 421-425 (1991)
[33] Cantor, G., Faraday’s search for the gravelectric effect, Phys. Educ., 26, 5, 289-293 (1991)
[34] Jantzen, R.; Carini, P.; Bini, D., The many faces of gravitoelectromagnetism, Ann. Physics, 215, 1, 1-50 (1992)
[35] K. McDonald, Vector gravity, Pedagogic Note 985: Vector gravity (1996). URL physics.princeton.edu/ mcdonald/examples/vectorgravity.pdf.
[36] McDonald, K., Anser to question # 49. Why \(c\) for gravitational waves?, Amer. J. Phys., 65, 7, 591-592 (1997)
[37] Clark, S. J.; Tucker, R. W., Gauge symmetry and gravito-electromagnetism, Classical Quantum Gravity, 17, 19, 4125-4157 (2000) · Zbl 0979.83025
[38] Reference frames and gravitomagnetism, (Pascual-Sánchez, J.; Floría, L.; Miguel, A. S.; Vicente, F., Proceedings of the XXIII Spanish Relativity Meeting, 6-9 2000, Valladolid, Spain (2001), World Scientific Publishing: World Scientific Publishing Singapore) · Zbl 0987.00058
[39] (Iorio, L., The Measurement of Gravitomagnetism: A Challenging Enterprise (2007), Nova Science Publishers)
[40] Mashhoon, B., Time-varying gravitomagnetism, Classical Quantum Gravity, 25, 1-8 (2008) · Zbl 1140.83336
[41] Borodikhin, V. N., Vector theory of gravity, Gravit. Cosmol., 17, 2, 161-165 (2011) · Zbl 1232.83065
[42] Bini, D.; Iorio, L.; Giordano, D., Orbital effects due to gravitational induction, Gen. Relativity Gravitation, 47, 130, 1-16 (2015) · Zbl 1329.83055
[43] Pfister, H.; King, M., (Inertia and Gravitation. Inertia and Gravitation, Lecture Notes in Physics, vol. 897 (2015), Springer) · Zbl 1315.83002
[44] Sattinger, D., Gravitation and special relativity, J. Dynam. Differential Equations, 27, 3-4, 1007-1025 (2015) · Zbl 1339.83015
[45] Lane, H. J., On the theoretical temperature of the sun, Amer. J. Sci., 50, 148, 57-74 (1870)
[46] Betti, E., Sopra l’equilibrio di una massa di gaz perfetto isolata nello spazio, Il Nuovo Cimento, 7, 1, 26-35 (1880)
[47] Ritter, A., Untersuchungen über die Höhe der Atmosphäre und die Constitution gasförmiger Weltkörper, Ann. Phys. Chem., 252, 5, 166-192 (1882) · JFM 14.0900.01
[48] Thomson, W., On the equilibrium of a gas under its own gravitation only, Phil. Mag. Ser. 5, 23, 142, 287-292 (1887)
[49] Hill, G. W., On the interior constitution of the Earth as respects density, Ann. of Math., 4, 19-29 (1888) · JFM 20.1240.01
[50] Darwin, G. H., On the mechanical conditions of a swarm of meteorites, and on theories of cosmogony, Philos. Trans. R. Soc. Lond. Ser. A, 180, 1-69 (1889) · JFM 21.0060.01
[51] Jeans, J. H., The stability of a spherical nebula, Philos. Trans. R. Soc. Lond. Ser. A, 199, 1-53 (1902) · JFM 33.0742.01
[52] Emden, R., Gaskugeln (1907), Teubner: Teubner Leipzig, Germany · JFM 38.0935.01
[53] Eddington, A., The Internal Constitution of the Stars (1930), Cambridge University Press: Cambridge University Press London · JFM 52.1021.05
[54] Fowler, R. H., The solution of Emden’s and similar differential equations, Mon. Not. R. Astron. Soc., 91, 63-91 (1930) · JFM 56.0389.02
[55] Fowler, R. H., Further studies of Emden’s and similar differential equations, Q. J. Math., OS-2, 1, 259-288 (1931) · Zbl 0003.23502
[56] Ebert, R., Über die verdichtung von H I-Gebiet, Z. Astrophys., 37, 217-232 (1955) · Zbl 0066.45303
[57] Bonnor, W. B., Boyle’s law and gravitational instability, Mon. Not. R. Astron. Soc., 116, 3, 351-359 (1956) · Zbl 0078.23703
[58] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1957), Dover: Dover New York NY · Zbl 0079.23901
[59] Lynden-Bell, D.; Wood, R., The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stella systems, Mon. Not. R. Astron. Soc., 138, 495-525 (1968)
[60] Saslaw, W. C., (Gravitational Physics of Stellar and Galactic Systems. Gravitational Physics of Stellar and Galactic Systems, Cambridge monographs on mathematical physics (1987), Cambridge University Press: Cambridge University Press Cambridge, UK)
[61] Padmanabhan, T., Statistical mechanics of gravitating systems, Phys. Rep., 188, 5, 285-362 (1990) · Zbl 1211.82001
[62] Horedt, G. P., Polytropes, (Applications in Astrophysics and Related Fields. Applications in Astrophysics and Related Fields, Astrophysics and Space Science Library, vol. 306 (2004), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, The Netherlands) · Zbl 0629.76117
[63] Clarke, C.; Carswell, B., Principles of Astrophysical Fluid Dynamics (2007), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1161.85001
[64] Binney, J.; Tremaine, S., Galactic Dynamics (2008), Princeton University Press: Princeton University Press Princeton NJ · Zbl 1136.85001
[65] Kippenhahn, R.; Weigert, A.; Weiss, A., (Stellar Structure and Evolution. Stellar Structure and Evolution, Astronomy and Astrophysics Library (2012), Springer: Springer Berlin, Germany) · Zbl 1253.85001
[66] Borzì, A.; Kunisch, K., The numerical solution of the steady state solid fuel ignition model and its optimal control, SIAM J. Sci. Comput., 22, 1, 263-284 (2000) · Zbl 0961.49018
[67] Reger, K.; v. Gorder, R. A., Lane-Emden equations of second kind modelling thermal explosion in infinite cylinder and sphere, Appl. Math. Mech.- Engl. Ed., 34, 12, 1439-1452 (2013) · Zbl 1284.80008
[68] Gorder, R. A.v., Exact first integrals for a Lane-Emden equation of the second kind modeling a thermal explosion in a rectangular slab, New Astron., 16, 8, 492-497 (2011)
[69] Chavanis, P. H., Gravitational instability of finite isothermal spheres, Astron. Astrophys., 381, 340-356 (2002) · Zbl 1060.85511
[70] Cash, J. R.; Hollevoet, D.; Mazzia, F.; Nagy, A. M., Algorithm 927: The MATLAB code bvptwp.m for the numerical solution of two point boundary value problems, ACM Trans. Math. Software, 39, 2, 15 (2013), 1-12 · Zbl 1295.65142
[71] Mazzia, F.; Sestini, A.; Trigiante, D., The continuous extension of the B-spline linear multistep methods for BVPs on non-uniform meshes, Appl. Numer. Math., 59, 3-4, 723-738 (2009) · Zbl 1161.65057
[72] Mazzia, F.; Cash, J. R.; Soetaert, K., Solving boundary value problems in the open source software R: Package bvpSolve, Opuscula Math., 34, 2, 387-403 (2014) · Zbl 1293.65104
[73] Mazzia, F.; Trigiante, D., A hybrid mesh selection strategy based on conditioning for boundary value ODE problems, Numer. Algorithms, 36, 2, 169-187 (2004) · Zbl 1050.65072
[74] Cash, J. R.; Mazzia, F., A new mesh selection algorithm, based on conditioning, for two-point boundary value codes, J. Comput. Appl. Math., 184, 2, 362-381 (2005) · Zbl 1076.65065
[75] Amodio, P.; Settanni, G., A matrix method for the solution of Sturm-Liouville problems, J. Numer. Anal. Ind. Appl. Math., 6, 1-2, 1-13 (2011) · Zbl 1432.65107
[76] Amodio, P.; Settanni, G., A stepsize variation strategy for the solution of regular Sturm-Liouville problems, (AIP Conference Proceedings, Vol. 1389 (2011)), 1335-1338
[77] Amodio, P.; Levitina, T.; Settanni, G.; Weinmüller, E., On the calculation of the finite Hankel transform eigenfunctions, J. Appl. Math. Comput., 43, 1-2, 151-173 (2013) · Zbl 1296.65188
[78] Amodio, P.; Levitina, T.; Settanni, G.; Weinmüller, E., Numerical simulation of the whispering gallery modes in prolate spheroids, Comput. Phys. Comm., 185, 4, 1200-1206 (2014) · Zbl 1344.35019
[79] Callen, H., Thermodynamics (1963), John Wiley & Sons: John Wiley & Sons New York NY, first publication in 1960 · Zbl 0095.23301
[80] Tisza, L., Generalized Thermodynamics (1966), The M.I.T. Press: The M.I.T. Press Cambridge, MA · Zbl 0119.44402
[81] Napolitano, L., Thermodynamique Des Systèmes Composites en équilibre ou Hors D’équilibre, Vol. LXXI (1971), Gauthier-Villars Éditeur: Gauthier-Villars Éditeur Paris, France
[82] Callen, H., Thermodynamics and an Introduction to Thermostatistics (1985), John Wiley & Sons: John Wiley & Sons New York NY · Zbl 0989.80500
[83] Antonov, V. A., Most probable phase distribution in spherical star systems and conditions for its existence, (Goodman, J.; Hut, P., Dynamics of Star Clusters, Proceedings of the 113th Symposium Held in Princeton, NJ, 29 May to 1 1984 (1985), Reidel Publishing Company: Reidel Publishing Company Dordrecht, The Netherlands), 525-540, English translation of original article [Vest. Leningrad Univ., 7, 135 (1962)]
[84] Ipser, J., On using entropy arguments to study the evolution and secular stability of spherical-dynamical systems, Astrophys. J., 193, 463-470 (1974)
[85] Katz, J., On the number of unstable modes of an equilibrium, Mon. Not. R. Astron. Soc., 183, 4, 765-770 (1978) · Zbl 0374.70017
[86] Padmanabhan, T., Antonov instability and gravothermal catastrophe – revisited, Astrophys. J. Suppl. Ser., 71, 651-664 (1989)
[87] Feynman, R.; Leighton, R.; Sands, M., The Feynman Lectures on Physics, Vol. 2 (1964), Addison-Wesley, Reading MA · Zbl 0138.43403
[88] Lynden-Bell, D.; Lynden-Bell, R. M., On the negative specific heat paradox, Mon. Not. R. Astron. Soc., 181, 405-419 (1977)
[89] Lynden-Bell, D., Negative specific heat in astronomy, physics and chemistry, Physica A, 263, 1-4, 293-304 (1999)
[90] Thirring, W., Systems with negative specific heat, Z. Phys. A, 235, 4, 339-352 (1970)
[91] Hachisu, I.; Sugimoto, D., Gravothermal catastrophe and negative specific-heat of self-gravitating systems, Progr. Theoret. Phys., 60, 1, 123-135 (1978)
[92] Thirring, W.; Narnhofer, H.; Posch, H. A., Negative specific heat, the thermodynamic limit and ergodicity, Phys. Rev. Lett., 91, 13, 13061 (2003), 1-4
[93] Chavanis, P. H., Phase transitions in self-gravitating systems, Int. J. Mod. Phys., 20, 22, 3113-3198 (2006) · Zbl 1121.82304
[94] Velazquez, L., Remarks about the thermodynamics of astrophysical systems in mutual interaction and related notions, J. Stat. Mech. Theory Exp., 2016, 3, 1-51 (2016) · Zbl 1456.80014
[95] Bonnor, W. B., Stability of polytropic gas spheres, Mon. Not. R. Astron. Soc., 118, 5, 523-527 (1958)
[96] Landsberg, P., Entropy and the unity of knowledge ii, J. Non-Equilib. Thermodyn., 12, 1, 45-60 (1987)
[97] King, I., The structure of star clusters. III. Some simple dynamical models, Astron. J., 71, 1, 64-75 (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.