×

Large gap asymptotics for Airy kernel determinants with discontinuities. (English) Zbl 1475.37014

The so-called Airy point process is a very important object that represents a collection of random points on the real line. This process arises as a scaling limit in different probabilistic models, and is said to be universal. It is an instance of a determinantal point process for which the kernel is specified by an Airy function.
One can also study this process after removing some of its points. This gives rise to the so-called thinned Airy process, which is exactly the model considered in this paper. If \(\overline{x}\) are some points \(x_{1},\ldots, x_{m}\) on the real line, and \(\overline{s}\) are values \(s_{1},\ldots, s_{m}\) in \((0,1)\), the function \(F(\overline{x},\overline{s})\) represents the probability having a gap on the interval \((x_{m},\infty)\) in the thinned Airy process, in which the particle in \((x_{j}, x_{j-1})\) is removed using the probability \(s_{j}\). The authors provide some asymptotic results for the function \(F(\overline{x},\overline{s})\) when the vector \(\overline{x}\) becomes very large.
The main technique used for the analysis is based on the Hilbert-Riemann problem device, a well-known tool in complex analysis. The authors also compare their results with formulas previously found in the literature, in particular when \(m=1\).

MSC:

37A50 Dynamical systems and their relations with probability theory and stochastic processes
15B52 Random matrices (algebraic aspects)
15A15 Determinants, permanents, traces, other special matrix functions
60B20 Random matrices (probabilistic aspects)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
34M50 Inverse problems (Riemann-Hilbert, inverse differential Galois, etc.) for ordinary differential equations in the complex domain

Software:

DLMF

References:

[1] Ablowitz, M.J., Segur, H.: Asymptotic solutions of the Korteweg-de Vries equation. Stud. Appl. Math. 57(1), 13-44 (1976/1977) · Zbl 0369.35055
[2] Amir, G.; Corwin, I.; Quastel, J., Probability distribution of the free energy of the continuum directed random polymer in \(1 + 1\) dimensions, Commun. Pure Appl. Math., 64, 466-537 (2011) · Zbl 1222.82070 · doi:10.1002/cpa.20347
[3] Arguin, L-P; Belius, D.; Bourgade, P., Maximum of the Characteristic Polynomial of Random Unitary Matrices, Commun. Math. Phys., 349, 703-751 (2017) · Zbl 1371.15036 · doi:10.1007/s00220-016-2740-6
[4] Baik, J.; Buckingham, R.; Di Franco, J., Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Commun. Math. Phys., 280, 463-497 (2008) · Zbl 1221.33032 · doi:10.1007/s00220-008-0433-5
[5] Baik, J.; Deift, P.; Rains, E., A Fredholm determinant identity and the convergence of moments for random Young tableaux, Commun. Math. Phys., 223, 3, 627-672 (2001) · Zbl 1005.47026 · doi:10.1007/s002200100555
[6] Basor, E.; Widom, H., Determinants of Airy operators and applications to random matrices, J. Stat. Phys., 96, 1-2, 1-20 (1999) · Zbl 0964.82023 · doi:10.1023/A:1004539513619
[7] Berestycki, N.; Webb, C.; Wong, MD, Random Hermitian matrices and gaussian multiplicative chaos, Probab. Theory Relat. Fields, 172, 172, 103-189 (2018) · Zbl 1429.60009 · doi:10.1007/s00440-017-0806-9
[8] Bogatskiy, A.; Claeys, T.; Its, A., Hankel determinant and orthogonal polynomials for a Gaussian weight with a discontinuity at the edge, Commun. Math. Phys., 347, 1, 127-162 (2016) · Zbl 1371.33034 · doi:10.1007/s00220-016-2691-y
[9] Bohigas, O.; Pato, MP, Missing levels in correlated spectra, Phys. Lett. B, 595, 171-176 (2004) · doi:10.1016/j.physletb.2004.05.065
[10] Bohigas, O.; Pato, MP, Randomly incomplete spectra and intermediate statistics, Phys. Rev. E, 74, 3, 036212 (2006) · doi:10.1103/PhysRevE.74.036212
[11] Borodin, A.: Determinantal point processes. In: Oxford Handbook of Random Matrix Theory, pp. 231-249. Oxford University Press, New York (2011) · Zbl 1238.60055
[12] Borodin, A.; Ferrari, P., Anisotropic growth of random surfaces in \(2+1\) dimensions, Commun. Math. Phys., 325, 603-684 (2014) · Zbl 1303.82015 · doi:10.1007/s00220-013-1823-x
[13] Borodin, A.; Okounkov, A.; Olshanski, G., Asymptotics of Plancherel measures for symmetric groups, J. Am. Math. Soc., 13, 3, 481-515 (2000) · Zbl 0938.05061 · doi:10.1090/S0894-0347-00-00337-4
[14] Bothner, T.; Buckingham, R., Large deformations of the Tracy-Widom distribution I. Non-oscillatory asymptotics, Commun. Math. Phys., 359, 223-263 (2018) · Zbl 1407.60005 · doi:10.1007/s00220-017-3006-7
[15] Bothner, T.; Deift, P.; Its, A.; Krasovsky, I., On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential I, Commun. Math. Phys., 337, 1397-1463 (2015) · Zbl 1321.82027 · doi:10.1007/s00220-015-2357-1
[16] Bourgade, P.; Erdős, L.; Yau, H-T, Edge universality of beta ensembles, Commun. Math. Phys., 332, 261-353 (2014) · Zbl 1306.82010 · doi:10.1007/s00220-014-2120-z
[17] Charlier, C.: Asymptotics of Hankel determinants with a one-cut regular potential and Fisher-Hartwig singularities. Int. Math. Res. Not. rny009, 10.1093/imrn/rny009 · Zbl 1479.15035
[18] Charlier, C.: Large gap asymptotics in the piecewise thinned Bessel point process, preprint
[19] Claeys, T.; Doeraene, A., The generating function for the Airy point process and a system of coupled Painlevé II equations, Stud. Appl. Math., 140, 4, 403-437 (2018) · Zbl 1419.37063 · doi:10.1111/sapm.12209
[20] Corwin, I., Ghosal, P.: Lower tail of the KPZ equation, arXiv:1802.03273 · Zbl 1457.35096
[21] Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach (1999), Providence: American Mathematical Society, Providence
[22] Deift, P.; Gioev, D., Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices, Commun. Pure Appl. Math., 60, 867-910 (2007) · Zbl 1119.15022 · doi:10.1002/cpa.20164
[23] Deift, P.; Its, A.; Krasovsky, I., Asymptotics for the Airy-kernel determinant, Commun. Math. Phys., 278, 643-678 (2008) · Zbl 1167.15005 · doi:10.1007/s00220-007-0409-x
[24] Deift, P.; Kriecherbauer, T.; McLaughlin, K.; Venakides, S.; Zhou, X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Commun. Pure Appl. Math., 52, 1491-1552 (1999) · Zbl 1026.42024 · doi:10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.0.CO;2-#
[25] Forrester, PJ, The spectrum edge of random matrix ensembles, Nuclear Phys. B, 402, 709-728 (1993) · Zbl 1043.82538 · doi:10.1016/0550-3213(93)90126-A
[26] Forrester, PJ, Asymptotics of spacing distributions 50 years later, MSRI Publ., 65, 199-222 (2014) · Zbl 1360.60017
[27] Foulquie Moreno, A.; Martinez-Finkelshtein, A.; Sousa, VL, Asymptotics of orthogonal polynomials for a weight with a jump on \([-1, 1]\), Constr. Approx., 33, 219-263 (2011) · Zbl 1213.42090 · doi:10.1007/s00365-010-9091-x
[28] Hagg, J.: Gaussian fluctuations in some determinantal processes. Ph.D. Thesis, 2007, ISBN 978-91-7178-603-6, http://kth.diva-portal.org/smash/get/diva2:11902/FULLTEXT01.pdf
[29] Hastings, SP; McLeod, JB, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Ration. Mech. Anal., 73, 31-51 (1980) · Zbl 0426.34019 · doi:10.1007/BF00283254
[30] Its, A., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions, In: Proceedings of the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory, vol. 4, pp. 1003-1037 (1990) · Zbl 0719.35091
[31] Its, A.; Krasovsky, I., Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump, Contemp. Math., 458, 215-247 (2008) · Zbl 1163.15027 · doi:10.1090/conm/458/08938
[32] Johansson, K., The arctic circle boundary and the Airy process, Ann. Prob., 33, 1, 1-30 (2005) · Zbl 1096.60039 · doi:10.1214/009117904000000937
[33] Johansson, K.: Random matrices and determinantal processes. In: Mathematical Statistical Physics, pp. 1-55. Elsevier, Amsterdam, (2006) · Zbl 1411.60144
[34] Krajenbrink, A.; Le Doussal, P.; Prolhac, S., Systematic time expansion for the Kardar-Parisi-Zhang equation, linear statistics of the GUE at the edge and trapped fermions, Nucl. Phys. B, 936, 239-305 (2018) · Zbl 1400.82194 · doi:10.1016/j.nuclphysb.2018.09.019
[35] Krasovsky, I.: Large gap asymptotics for random matrices. In: “New Trends in Mathematical Physics”, XVth International Congress on Mathematical Physics, Springer, Berlin (2009) · Zbl 1184.15025
[36] Kuijlaars, ABJ; McLaughlin, KT-R; Van Assche, W.; Vanlessen, M., The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on \([-1,1]\), Adv. Math., 188, 337-398 (2004) · Zbl 1082.42017 · doi:10.1016/j.aim.2003.08.015
[37] Lambert, G.; Ostrovsky, D.; Simm, N., Subcritical multiplicative chaos for regularized counting statistics from random matrix theory, Commun. Math. Phys., 360, 1, 1-54 (2018) · Zbl 1434.60031 · doi:10.1007/s00220-018-3130-z
[38] Olver, FWJ; Lozier, DW; Boisvert, RF; Clark, CW, NIST Handbook of Mathematical Functions (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1198.00002
[39] Praehofer, M.; Spohn, H., Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys., 108, 1076-1106 (2002) · Zbl 1025.82010
[40] Soshnikov, A., Universality at the edge of the spectrum in Wigner random matrices, Commun. Math. Phys., 207, 697-733 (1999) · Zbl 1062.82502 · doi:10.1007/s002200050743
[41] Soshnikov, A., Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields, J. Stat. Phys., 100, 491-522 (2000) · Zbl 1041.82001 · doi:10.1023/A:1018672622921
[42] Soshnikov, A., Determinantal random point fields, Russ. Math. Surv., 55, 5, 923-975 (2000) · Zbl 0991.60038 · doi:10.1070/RM2000v055n05ABEH000321
[43] Tracy, C.; Widom, H., Level-spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151-174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[44] Xu, S.-X., Dai, D.: Tracy-Widom distributions in critical unitary random matrix ensembles and the coupled Painlevé II system. Commun. Math. Phys. (2018). 10.1007/s00220-018-3257-y · Zbl 1464.60009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.