×

Locally nilpotent derivations of factorial domains. (English) Zbl 1475.14117

Let \(R\subset A\) be factorial domains containing \(\mathbb Q\). In the paper under review the authors give an equivalent condition in terms of locally nilpotent derivations for \(A\) to be \(R\)-isomorphic to \(R[v,w]/(cw-h(v))\), where \(0\not=c\in R\) is not a unit and \(h(v)\in R[v]\) is nonconstant modulo every prime factor of \(c\): There exists an irreducible locally nilpotent \(R\)-derivation \(\xi\) of \(A\) with ring of constants \(A^{\xi}\) equal to \(R\) and such that there exists \(c=\xi(s)\in{\mathfrak p}{\mathfrak l}=\xi(A)\cap A^{\xi}\) with the property that the ideal \(R[s]\cap cA\) of \(R[s]\) is generated by \(c\) and a polynomial \(h(s)\in R[s]\). The result implies the isomorphism of the differential rings \((A,\xi)\) and \((R[v,w]/(cw-h(v)),\delta)\) where \(\delta(v)=c\) and \(\delta(w)=\partial_vh(v)\). The authors show that an example from a paper by Daigle gives that the result does not hold if \(A\) in not factorial. In the particular case when \(R\) is a polynomial ring in one variable, the result yields a natural generalization of of a result in Masuda characterizing Danielewski hypersurfaces whose coordinate ring is factorial. Finally, the authors apply their result to the study of triangularizable locally nilpotent \(R\)-derivations of the polynomial ring in two variables over \(R\).

MSC:

14R20 Group actions on affine varieties
13N15 Derivations and commutative rings
Full Text: DOI

References:

[1] Barkatou, M. A., El Houari, H. and El Kahoui, M., Triangulable locally nilpotent derivations in dimension three, J. Pure Appl. Algebra212(9) (2008) 2129-2139. · Zbl 1162.14040
[2] Barkatou, M. A. and El Kahoui, M., Locally nilpotent derivations with a PID ring of constants, Proc. Amer. Math. Soc.140(1) (2012) 119-128. · Zbl 1236.14055
[3] Bass, H., A non-triangulable action of \(G_a\) on \(\mathbb{A}^3\), J. Pure Appl. Algebra33 (1984) 1-5. · Zbl 0555.14019
[4] Berson, J., van den Essen, A. and Maubach, S., Derivations having divergence zero on \(R [X, Y]\), Israel J. Math.124 (2001) 115-124. · Zbl 1095.13546
[5] Bhatwadekar, S. M. and Dutta, A. K., On residual variables and stably polynomial algebras, Comm. Algebra21(2) (1993) 635-645. · Zbl 0778.13016
[6] Bhatwadekar, S. M. and Dutta, A. K., Kernel of locally nilpotent \(R\)-derivations of \(R [X, Y]\), Trans. Amer. Math. Soc.349(8) (1997) 3303-3319. · Zbl 0883.13006
[7] Daigle, D., A necessary and sufficient condition for triangulability of derivations of \(k [X, Y, Z]\), J. Pure Appl. Algebra113(3) (1996) 297-305. · Zbl 0874.13021
[8] Daigle, D., Locally nilpotent derivations and Danielewski surfaces, Osaka J. Math.41(1) (2004) 37-80. · Zbl 1078.13010
[9] Daigle, D., Triangular derivations of \(k [X, Y, Z]\), J. Pure Appl. Algebra214(7) (2010) 1173-1180. · Zbl 1196.14055
[10] Daigle, D. and Freudenburg, G., Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of \(k [X_1, \ldots, X_n]\), J. Algebra204(2) (1998) 353-371. · Zbl 0956.13007
[11] van den Essen, A., Polynomial Automorphisms and the Jacobian Conjecture, . Vol. 190 (Birkhäuser Verlag, Basel, 2000). · Zbl 0962.14037
[12] van den Essen, A., Around the cancellation problem, in Affine Algebraic Geometry, (Osaka University Press, Osaka, 2007), pp. 463-481. · Zbl 1129.14086
[13] van den Essen, A. and van Rossum, P., Coordinates in two variables over a \(\Bbb Q\)-algebra, Trans. Amer. Math. Soc.356(5) (2004) 1691-1703 (electronic). · Zbl 1040.13006
[14] Finston, D. R. and Walcher, S., Centralizers of locally nilpotent derivations, J. Pure Appl. Algebra120(1) (1997) 39-49. · Zbl 0890.14027
[15] Freudenburg, G., Triangulability criteria for additive group actions on affine space, J. Pure Appl. Algebra105(3) (1995) 267-275. · Zbl 0857.14024
[16] Freudenburg, G., Algebraic Theory of Locally Nilpotent Derivations, . Vol. 136, 2nd edn. (Springer-Verlag, Berlin, 2017). Invariant Theory and Algebraic Transformation Groups, VII. · Zbl 1391.13001
[17] K. Langlois, Models of affine curves and \(\mathbb{G}_a\)-actions, to appear in Proc. Sch Arcs Singul., https://arxiv.org/pdf/1802.08147.pdf. · Zbl 1440.14275
[18] Masuda, K., Characterizations of hypersurfaces of Danielewski type, J. Pure Appl. Algebra218(4) (2014) 624-633. · Zbl 1291.14089
[19] Masuda, K., Families of hypersurfaces with noncancellation property, Proc. Amer. Math. Soc.145(4) (2017) 1439-1452. · Zbl 1390.14190
[20] Miyanishi, M., Curves on Rational and Unirational Surfaces, , Vol. 60 (Tata Institute of Fundamental Research, Bombay, 1978). · Zbl 0425.14008
[21] Miyanishi, M., Additive group scheme actions on integral schemes defined over discrete valuation rings, J. Algebra322(9) (2009) 3331-3344. · Zbl 1186.14049
[22] Nouazé, Y. and Gabriel, P., Idéaux premiers de l’algèbre enveloppante d’une algèbre de Lie nilpotente, J. Algebra6 (1967) 77-99. · Zbl 0159.04101
[23] Popov, V. L., On actions of \(G_a\) on \(A^n\), in Algebraic Groups Utrecht 1986, , Vol. 1271 (Springer, Berlin, 1987) pp. 237-242. · Zbl 0685.14027
[24] Rentschler, R., Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B267 (1968) A384-A387. · Zbl 0165.05402
[25] Wright, D., On the Jacobian conjecture, Illinois J. Math.25(3) (1981) 423-440. · Zbl 0463.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.