×

The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching. (English) Zbl 1473.92047

Summary: The effect of toxin-producing phytoplankton and environmental stochasticity are interesting problems in marine plankton ecology. In this paper, we develop and analyze a stochastic phytoplankton allelopathy model, which takes both white and colored noises into account. We first prove the existence of the global positive solution of the model. And then by using the stochastic Lyapunov functions, we investigate the positive recurrence and ergodic property of the model, which implies the existence of a stationary distribution of the solution. Moreover, we obtain the mean and variance of the stationary distribution. Our results show that both the two kinds of environmental noises and toxic substances have great impacts on the evolution of the phytoplankton populations. Finally, numerical simulations are carried out to illustrate our theoretical results.

MSC:

92D40 Ecology
37H10 Generation, random and stochastic difference and differential equations
60J28 Applications of continuous-time Markov processes on discrete state spaces
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
Full Text: DOI

References:

[1] Thurman, H. V.; Trujillo, A. P., Introductory oceanography (2003), Academic Internet Publishers
[2] Henson, S. A.; Sarmiento, J. L.; Dunne, J. P.; Bopp, L.; Lima, I.; Doney, S. C., Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity, Biogeosciences, 7, 621-640 (2010)
[3] Bandyopadhyay, M.; Saha, T.; Pal., R., Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Nonlinear Anal Hybrid Syst, 2, 958-970 (2008) · Zbl 1218.34098
[4] Beman, J. M.; Arrigo, K. R.; Matson, P. A., Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean, Nature, 434, 211-214 (2005)
[5] Tapaswi, P. K.; Mukhopadhyay, A., Effect of environmental fluctuation on plankton allelopathy, J Math Biol, 39, 39-58 (1999) · Zbl 0929.92036
[6] Nan, C. R.; Zhang, H. Z.; Lin, S. Z.; Zhao, G. Q.; Liu, X. Y., Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures, Aquat Bot, 89, 9-15 (2008)
[7] Hallam, T. G.; de Luna, J. T., Extinction and persistence in models of population-toxicant interactions, Ecol Model, 22, 13-20 (1984)
[8] Chattopadhyay, J., Effect of toxic substances on a two-species competitive system, Ecol Model, 84, 287-289 (1996)
[9] Kar, T. K.; Chaudhuri, K. S., On non-selective harvesting of two competing fish species in the presence of toxicity, Ecol Model, 161, 125-137 (2003)
[10] Marard-Smith, J., Models in ecology (1978), Cambridge University Press: Cambridge University Press Cambridge, Great Britain
[11] Mukhopadhyay, A.; Chattopadhyay, J.; Tapaswi, P. K., A delay differential equations model of plankton allelopathy, Math Biosci, 149, 167-189 (1998) · Zbl 0946.92031
[12] Liu, S. Q.; Xie, X. Z.; Tang, J. L., Competing population model with nonlinear interspecific regulation and maturation delays, Int J Biomath, 5, 3, 1260007 (2012), (22 pages) · Zbl 1280.92053
[13] Rice, E. L., Allelopathy (1984), Academic Press, INC: Academic Press, INC New York
[14] Huang, D. W.; Wang, H. L.; Feng, J. F.; Zhu, Z. W., Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics, Appl Math Model, 32, 1318-1326 (2008) · Zbl 1191.34063
[15] Wu, R. H.; Zou, X. L.; Wang, K., Dynamical behaviors of a competitive system under the influence of random disturbance and toxic substances, Nonlinear Dyn, 77, 1209-1222 (2014) · Zbl 1331.92139
[16] Sarkar, R.; Chattopadhayay, J., Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism-mathematical models and experimental observations, J Theor Biol, 224, 501-516 (2003) · Zbl 1465.92098
[17] May, R. M., Stability and complexity in model ecosystems (1973), Princeton Univ Press
[18] Mandal, P. S.; Abbas, S.; Banerjee, M., A comparative study of deterministic and stochastic dynamics for a non-autonomous allelopathic phytoplankton model, Appl Math Comput, 238, 300-318 (2014) · Zbl 1334.92355
[19] Mandal, P. S.; Allen, L. S.; Banerjee, M., Stochastic modelling of phytoplankton allelopathy, Appl Math Model, 38, 1583-1596 (2014) · Zbl 1427.92100
[20] Liu, M.; Mandal, P. S., Dynamical behavior of a one-prey two-predator model with random perturbations, Commun Nonlinear Sci Numer Simul, 28, 123-137 (2015) · Zbl 1510.92169
[21] Scheffer, M.; Carpenter, S. R., Catastrophic regime shifts in ecosystems: linking theory to observation, Trends Ecol Evolut, 12, 648-656 (2003)
[22] Mao, X. R.; Yuan, C. G., Stochastic differential equations with Markovian switching (2006), Imperial College Press: Imperial College Press London · Zbl 1126.60002
[23] Li, X. Y.; Jiang, D. Q.; Mao, X. R., Population dynamical behavior of Lotka-Volterra system under regime switching, J Comput Appl Math, 232, 427-448 (2009) · Zbl 1173.60020
[24] Zhu, C.; Yin, G., On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal Theory Methods Appl, 71, 1370-1379 (2009) · Zbl 1238.34059
[25] Zu, L.; Jiang, D. Q.; O’Regan, D., Conditions for persistence and ergodicity of a stochastic Lotka-Volterra predator-prey model with regime switching, Commun Nonlinear Sci Numer Simul, 29, 1-11 (2015) · Zbl 1510.92195
[26] Liu, H.; Li, X. Y.; Yang, Q. S., The ergodic property and positive recurrence of a multi-group Lotka-Volterra mutualistic system with regime switching, Syst Control Lett, 62, 805-810 (2013) · Zbl 1281.93094
[27] Settati, A.; Lahrouz, A., Stationary distribution of stochastic population systems under regime switching, Appl Math Comput, 244, 235-243 (2014) · Zbl 1335.92084
[28] Li, X. Y.; Gray, A.; Jiang, D. Q.; Mao, X. R., Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J Math Anal Appl, 376, 11-28 (2011) · Zbl 1205.92058
[29] Liu, M.; Li, W. X.; Wang, K., Persistence and extinction of a stochastic delay logistic equation under regime switching, Appl Math Lett, 26, 140-144 (2013) · Zbl 1270.34188
[30] Liu, M.; Wang, K., Asymptotic properties and simulations of a stochastic logistic model under regime switching, Math Comput Model, 54, 2139-2154 (2011) · Zbl 1235.60099
[31] Scheffer, M.; Carpenter, S. R.; Foley, J. A.; Folke, C.; Walker, B., Catastrophic shifts in ecosystems, Nature, 413, 591-596 (2001)
[32] Zhu, G.; Yin, G., Asymptotic properties of hybrid diffusion systems, SIAM J Control Optim, 46, 1155-1179 (2007) · Zbl 1140.93045
[33] Khasminskii, R. Z.; Zhu, C.; Yin, G., Stability of regime-switching diffusions, Stoch Process Appl, 117, 1037-1051 (2007) · Zbl 1119.60065
[34] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev, 43, 525-546 (2001) · Zbl 0979.65007
[35] Mao, X. R.; Yuan, C. G.; Yin, G., Numerical method for stationary distribution of stochastic differential equations with Markovian switching, J Comput Appl Math, 174, 1-27 (2005) · Zbl 1066.65016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.