×

Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds. (English) Zbl 1473.30026

Let \(G : = \text{PGL}(2,\mathbb{K})\) where \(\mathbb{K} = \mathbb{R}, \mathbb{C}\) and let \(X := \mathbb{H}^2, \mathbb{H}^3\), respectively. The paper under review studies the geometry and topology of locally symmetric spaces \(\Gamma \backslash X\) and the growth of multiplicities of irreducible unitary representations in \(L^2(\Gamma \backslash G)\) as \(\Gamma\) varies among the set of all arithmetic lattices in \(G\). Let us denote by \(C_c(G)\) the space of continuous compactly supported functions on \(G\). The main result of the paper is Theorem 1.1, which can be stated as follows.
Let \(\Gamma \subset G\) be an arithmetic lattice with invariant trace field \(k\) and let \(W \subset G\) be the set of regular semisimple non-torsion elements. Then there exists a constant \(1/2 > \eta > 0\) with the following property: for every \(C > 0\) and every \(f \in C_c(G)\) with \(\|f\|_{\infty}\leq 1,\) and \(\text{supp}\ f \subset \text{B}(\eta[k : \mathbb{Q}] + C)\) we have \[ \left| \underset{[\gamma]\in \Gamma \cap W} \sum \text{Vol}(\Gamma_{\gamma}\backslash G_{\gamma}) \int_{G_{\gamma}\backslash G} f(g^{-1}\gamma g)dg \right|\ll_C \text{Vol}(\Gamma \backslash G)\mathit{\Delta}_k^{-4/9}. \] Moreover, if \(\Gamma\) is a congruence lattice, then the RHS of the above inequality is \(\text{Vol}(\Gamma \backslash G)^{11/12}\mathit{\Delta}_k^{-4/9}\).
The proof of this theorem is given in Section 8.2. It is divided into two cases, congruence and non-congruence arithmetic lattices. In the previous sections a number of necessary results for the proof are obtained.
Several other results are proved using Theorem 1.1. Let \((\Gamma_n)_{n\in \mathbb{N}}\) be a sequence of pairwise non-conjugate torsion-free co-compact congruence arithmetic lattices in \(G\). Then \((\Gamma_n)_{n\in \mathbb{N}}\) has the limit multiplicity property (Theorem 1.2). In Section 9 the following result is proved (Theorem 1.3): There exists \(\eta > 0\) with the following property. Let \(\Gamma\) be a torsion-free arithmetic lattice in \(G\), with invariant trace field \(k\) and let \(R = C + \eta[k : \mathbb{Q}]\) for some constant \(C > 0\). Then \(\text{Vol}((\Gamma\backslash X)_{<R}) \ll_C \text{Vol}(\Gamma\backslash X)^{11/12}\mathit{\Delta}_k^{-4/9}\) if \(\Gamma\) is a congruence lattice, or \(\text{Vol}((\Gamma\backslash X)_{<R})) \ll_C\text{Vol}(\Gamma\backslash X)\mathit{\Delta}_k^{-4/9}\) otherwise.
As an application of Theorem 1.3, the author proves a conjecture due to Gelander on the homotopy type of arithmetic hyperbolic 3-manifolds. The proof is given in Theorem 1.5: There exist absolute positive constants \(A\), \(B\) such that every arithmetic, hyperbolic 3-manifold \(M\) is homotopy equivalent to a simplicial complex with at most \(A\text{Vol}(M)\) vertices where each vertex has degree bounded by \(B\), and if \(M\) is compact \(B = 3104\) can be taken. It is done in Section 10.1.
Two corollaries are deduced from Theorem 1.5. Corollary 1.6 assures that there exists a constant \(C > 0\) such that any torsion-free arithmetic lattice \(\Gamma\) in \(\text{PGL}(2,\mathbb{C})\) admits a presentation \(\Gamma = \langle S\ |\ \Sigma\rangle\) where \(|S|\), \(|\Sigma|\) are bounded by \(C\text{Vol}(M)\) and all relations in \(\Sigma\) are of length at most 3. In Corollary 1.7 it is proved that if \(\Gamma\) is a torsion-free, arithmetic lattice in \(\text{PGL}(2,\mathbb{C})\) then \(\log |H_1(\Gamma \backslash \mathbb{H}^3,\mathbb{Z})_{\text{tors}}| \ll \text{Vol}(\Gamma \backslash \mathbb{H}^3)\).
Let \(b_i(\Gamma \backslash X) := \text{dim}_{\mathbb{C}} H_i(\Gamma \backslash X, \mathbb{C})\) and let \(b_i^{(2)}(X)\) be the \(L^2\)-Betti numbers of \(X\). In the final Section 10.2 two results about the growth of Betti numbers are obtained. Let \((\Gamma_n)_{n\in\mathbb{N}}\) be a sequence of pairwise distinct congruence arithmetic co-compact torsion-free lattices in \(\text{PGL}(2,\mathbb{C})\). Then \(\underset{n \rightarrow \infty} \lim \frac{b_i(\Gamma_n \backslash X)}{\text{Vol}(\Gamma_n \backslash X)}=b_i^{(2)}(X)=0\) (Corollary 1.8), and Theorem 1.9: For any co-compact torsion-free arithmetic lattice \(\Gamma \subset \text{PGL}(2,\mathbb{C})\) with invariant trace field \(k\) we have \(\frac{b_1(\Gamma\backslash \mathbb{H}^3)}{\text{Vol}(\Gamma\backslash \mathbb{H}^3)} \ll [k:\mathbb{Q}]^{-1}\).

MSC:

30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
20H10 Fuchsian groups and their generalizations (group-theoretic aspects)
22E46 Semisimple Lie groups and their representations
11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.

References:

[1] Abert, M.; Bergeron, N.; Biringer, I.; Gelander, T.; Nikolov, N.; Raimbault, J.; Samet, I., On the growth of \(L^2\)-invariants for sequences of lattices in Lie groups, Ann. Math., 185, 3, 711-790 (2017) · Zbl 1379.22006
[2] Arthur, J. (ed.), Harmonic analysis, the trace formula, and shimura varieties. In: Clay Mathematics Proceedings, vol. 4. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA
[3] Barbasch, D.; Moscovici, H., \(L^2\)-index and the Selberg trace formula, J. Funct. Anal., 53, 2, 151-201 (1983) · Zbl 0537.58039
[4] Bardestani, M.; Mallahi-Karai, K.; Salmasian, H., Minimal dimension of faithful representations for \(p\)-groups, J. Group Theory, 19, 4, 589-608 (2016) · Zbl 1370.20011
[5] Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 (2001) (electronic) · Zbl 1010.82021
[6] Bergeron, N., Clozel, L.: Spectre automorphe des variétés hyperboliques et applications topologiques, Société mathématique de France (2005) · Zbl 1098.11035
[7] Bilu, Y., Limit distribution of small points on algebraic tori, Duke Math. J., 89, 3, 465-476 (1997) · Zbl 0918.11035
[8] Borel, A., Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8, 1, 1-33 (1981) · Zbl 0473.57003
[9] Borel, A.; Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Second, Mathematical Surveys and Monographs (2000), Providence: American Mathematical Society, Providence · Zbl 0980.22015
[10] Bott, R.; Tu, LW, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics (1982), New York: Springer, New York · Zbl 0496.55001
[11] Carayol, H., Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4), 17, 2, 191-225 (1984) · Zbl 0549.22009
[12] Chinburg, T.; Friedman, E., The smallest arithmetic hyperbolic three-orbifold, Invent. Math., 86, 3, 507-527 (1986) · Zbl 0643.57011
[13] Clozel, L., On limit multiplicities of discrete series representations in spaces of automorphic forms, Invent. Math., 83, 2, 265-284 (1986) · Zbl 0582.22012
[14] de George, DL; Wallach, NR, Limit formulas for multiplicities in \(L^2({\varGamma } \backslash G)\), Ann. Math. (2), 107, 1, 133-150 (1978) · Zbl 0397.22007
[15] DeGeorge, DL; Wallach, NR, Limit formulas for multiplicities in \(L^2({\varGamma } \backslash G)\). II. The tempered spectrum, Ann. Math. (2), 109, 3, 477-495 (1979) · Zbl 0482.43006
[16] DeGeorge, DL, On a theorem of Osborne and Warner. Multiplicities in the cuspidal spectrum, J. Funct. Anal., 48, 1, 81-94 (1982) · Zbl 0503.22008
[17] Delorme, P., Formules limites et formules asymptotiques pour les multiplicités dans \({L}^2(g/\gamma )\), Duke Math. J., 53, 3, 691-731 (1986) · Zbl 0623.22012
[18] Dixmier, J.: \({C}^*\)-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford. Translated from the French by Francis Jellett; North-Holland Mathematical Library, Vol. 15 · Zbl 0657.46040
[19] Dobrowolski, E., On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith., 34, 4, 391-401 (1979) · Zbl 0416.12001
[20] Finis, T., The limit multiplicity problem for congruence subgroups of arithmetic lattices and the trace formula, Kyoto Proc., 2013, 164-176 (1871)
[21] Finis, T.; Lapid, E., An approximation principle for congruence subgroups, J. Eur. Math. Soc. (JEMS), 20, 5, 1075-1138 (2018) · Zbl 1472.20109
[22] Finis, T.; Lapid, E., An approximation principle for congruence subgroups II: application to the limit multiplicity problem, Math. Z., 289, 3-4, 1357-1380 (2018) · Zbl 1499.20119
[23] Finis, T.; Lapid, E.; Müller, W., Limit multiplicities for principal congruence subgroups of \({\rm GL}(n)\) and \({\rm SL}(n)\), J. Inst. Math. Jussieu, 14, 3, 589-638 (2015) · Zbl 1396.11083
[24] Friedman, E., Analytic formulas for the regulator of a number field, Invent. Math., 98, 3, 599-622 (1989) · Zbl 0694.12006
[25] Frączyk, M.; Raimbault, J., Betti numbers of Shimura curves and arithmetic three-orbifolds, Algebra Number Theory, 13, 10, 2359-2382 (2019) · Zbl 1456.11110
[26] Gelander, T., Homotopy type and volume of locally symmetric manifolds, Duke Math. J., 124, 3, 459-515 (2004) · Zbl 1076.53040
[27] Häsä, J.; Stasinski, A., Representation growth of compact linear groups, Trans. Am. Math. Soc., 372, 2, 925-980 (2019) · Zbl 1431.22019
[28] Labesse, J-P; Langlands, RP, \(L\)-indistinguishability for \({\rm SL}(2)\), Can. J. Math., 31, 4, 726-785 (1979) · Zbl 0421.12014
[29] Lang, S.: Algebraic Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 110. Springer, New York · Zbl 0211.38404
[30] Lang, S.: \({\rm SL}_2({\bf R})\), Graduate Texts in Mathematics, vol. 105. Springer, New York (1985). Reprint of the 1975 edition · Zbl 0583.22001
[31] Langlands, R.P.: Base Change for GL(2), Annals of Mathematics Studies, vol. 96. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1980) · Zbl 0444.22007
[32] Larsen, M.: http://mlarsen.math.indiana.edu (2008)
[33] Levit, A.: On Benjamini-Schramm limits of congruence subgroups (2017). arXiv:1705.04200 · Zbl 1492.22009
[34] Linowitz, B.; McReynolds, DB; Pollack, P.; Thompson, L., Bounded gaps between primes and the length spectra of arithmetic hyperbolic 3-orbifolds, C. R. Math. Acad. Sci. Paris, 355, 11, 1121-1126 (2017) · Zbl 1379.58016
[35] Linowitz, B.; McReynolds, DB; Pollack, P.; Thompson, L., Systoles of arithmetic hyperbolic surfaces and 3-manifolds, Math. Res. Lett., 24, 5, 1497-1522 (2017) · Zbl 1396.57030
[36] Linowitz, B.; McReynolds, DB; Pollack, P.; Thompson, L., Counting and effective rigidity in algebra and geometry, Invent. Math., 213, 2, 697-758 (2018) · Zbl 1423.53054
[37] Matsushima, Y., A formula for the betti numbers of compact locally symmetric Riemannian manifolds, J. Differ. Geom., 1, 1-2, 99-109 (1967) · Zbl 0164.22101
[38] Matz, J., Limit multiplicities for \({\rm SL}_2({\cal{O}}_F)\) in \({\rm SL}_2({\mathbb{R}}^{r_1}\oplus{\mathbb{C}}^{r_2})\), Groups Geom. Dyn., 13, 3, 841-881 (2019) · Zbl 1470.11136
[39] Milne, J.S.: Class Field Theory, lecture notes available at www.math.lsa.umich.edu (1997)
[40] Nelson, P.D., Venkatesh, A.: The orbit method and analysis of automorphic forms. arXiv preprint arXiv:1805.07750 (2018)
[41] Odlyzko, AM, Lower bounds for discriminants of number fields. II, Tôhoku Math. J., 29, 2, 209-216 (1977) · Zbl 0362.12005
[42] Ono, T., Arithmetic of algebraic tori, Ann. Math. (2), 74, 101-139 (1961) · Zbl 0119.27801
[43] Ono, T., On the Tamagawa number of algebraic tori, Ann. Math. (2), 78, 47-73 (1963) · Zbl 0122.39101
[44] Platonov, V., Rapinchuk, A.: Algebraic groups and number theory. Pure and Applied Mathematics, vol. 139. Academic Press, Inc., Boston, MA. Translated from the 1991 Russian original by Rachel Rowen · Zbl 0732.20027
[45] Raimbault, J., On the convergence of arithmetic orbifolds, Ann. Inst. Fourier (Grenoble), 67, 6, 2547-2596 (2017) · Zbl 1420.22010
[46] Ratcliffe, J., Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics (2006), New York: Springer, New York · Zbl 1106.51009
[47] Reid, A.; MacLachlan, C., The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics (2003), New York: Springer, New York · Zbl 1025.57001
[48] Rohlfs, J.; Speh, B., On limit multiplicities of representations with cohomology in the cuspidal spectrum, Duke Math. J., 55, 1, 199-211 (1987) · Zbl 0626.22008
[49] Sarnak, P.C.: A note on the spectrum of cusp forms for congruence subgroups. Preprint (1982)
[50] Sauvageot, F.: Principe de densité pour les groupes réductifs. Compositio Math. 108(2), 151-184 (1997) (French, with English and French summaries) · Zbl 0882.22019
[51] Savin, G., Limit multiplicities of cusp forms, Invent. Math., 95, 1, 149-159 (1989) · Zbl 0673.22003
[52] Serre, J-P, Une “formule de masse” pour les extensions totalement ramifiées de degré donné d’un corps local, C. R. Acad. Sci. Paris Sér. A-B, 286, 22, A1031-A1036 (1978) · Zbl 0388.12005
[53] Shalom, Y., Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. Math. (2), 152, 1, 113-182 (2000) · Zbl 0970.22011
[54] Shyr, J.-M.: Class number formula of algebraic tori with applications to relative class numbers of certain relative quadratic extensions of algebraic number fields. Ph.D. Thesis. Thesis (Ph.D.)—The Johns Hopkins University
[55] Silberger, A.J.: \({\rm PGL}_2\) over the \(p\)-adics: its representations, spherical functions, and Fourier analysis, Lecture Notes in Mathematics, vol. 166. Springer, Berlin (1970) · Zbl 0204.44102
[56] Silberger, AJ, Irreducible representations of a maximal compact subgroup of \({\rm PGL}_2\) over the \(p\)-adics, Math. Ann., 229, 1, 1-12 (1977) · Zbl 0352.22017
[57] Ullmo, E.; Yafaev, A., Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites galoisiennes de points spéciaux, Bull. Soc. Math. France, 143, 1, 197-228 (2015) · Zbl 1323.11043
[58] Zimmer, RJ, Ergodic Theory and Semisimple Groups (2013), Berlin: Springer, Berlin · Zbl 0571.58015
[59] Zimmert, R., Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math., 62, 3, 367-380 (1981) · Zbl 0456.12003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.