×

Evaluation of Gaussian hypergeometric series using Huff’s models of elliptic curves. (English) Zbl 1473.11135

Summary: A Huff curve over a field \(K\) is an elliptic curve defined by the equation \(ax(y^2-1)=by(x^2-1)\) where \(a,b\in K\) are such that \(a^2\ne b^2\). In a similar fashion, a general Huff curve over \(K\) is described by the equation \(x(ay^2-1)=y(bx^2-1)\) where \(a,b\in K\) are such that \(ab(a-b)\ne 0\). In this note we express the number of rational points on these curves over a finite field \(\mathbb {F}_q\) of odd characteristic in terms of Gaussian hypergeometric series \[ _2F_1(\lambda ):=_2F_1\left( \begin{matrix} \phi\! &\! \phi \\\! &\!{} \varepsilon \end{matrix}\Big | \lambda \right) \] where \(\phi\) and \(\varepsilon\) are the quadratic and trivial characters over \(\mathbb {F}_q\), respectively. Consequently, we exhibit the number of rational points on the elliptic curves \(y^2=x(x+a)(x+b)\) over \(\mathbb {F}_q\) in terms of \(_2F_1(\lambda )\). This generalizes earlier known formulas for Legendre, Clausen and Edwards curves.
Furthermore, using these expressions we display several transformations of \(_2F_1\). Finally, we present the exact value of \(_2F_1(\lambda )\) for different \(\lambda\)’s over a prime field \(\mathbb {F}_p\) extending previous results of J. Greene [Trans. Am. Math. Soc. 301, 77–101 (1987; Zbl 0629.12017)] and K. Ono [Trans. Am. Math. Soc. 350, No. 3, 1205–1223 (1998; Zbl 0910.11054)].

MSC:

11G20 Curves over finite and local fields
33C05 Classical hypergeometric functions, \({}_2F_1\)
11D45 Counting solutions of Diophantine equations
11T24 Other character sums and Gauss sums
14G05 Rational points

References:

[1] Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton (2008) · Zbl 1200.11043 · doi:10.1201/9781420071474
[2] Schmitt, S., Zimmer, H.G.: Elliptic Curves: A Computational Approach. Walter de Gruyter, Berlin (2003) · Zbl 1195.11078
[3] Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, New York (1986) · Zbl 0585.14026 · doi:10.1007/978-1-4757-1920-8
[4] Schoof, R.: Counting points on ellitic curves over finite fields. J. Théor. Nombres Bordx. 7, 219-254 (1995) · Zbl 0852.11073 · doi:10.5802/jtnb.142
[5] Gaudry, P.; Harley, RL; Bosma, W. (ed.), Counting points on hyperelliptic curves over finite fields, No. 1838, 313-332 (2000), Berlin · Zbl 1011.11041 · doi:10.1007/10722028_18
[6] Greene, J.: Hypergeometric functions over finite fields. Trans. Am. Math. Soc. 301, 77-101 (1987) · Zbl 0629.12017 · doi:10.1090/S0002-9947-1987-0879564-8
[7] Ono, K.: Values of Gaussian hypergeometric series. Trans. Am. Math. Soc. 350, 1205-1223 (1998) · Zbl 0910.11054 · doi:10.1090/S0002-9947-98-01887-X
[8] El-Guindy, A., Ono, K.: Hasse invariants for the Clausen elliptic curves. Ramanujan J. 31, 3-13 (2013) · Zbl 1287.11079 · doi:10.1007/s11139-011-9342-x
[9] Sadek, M., El-Sissi, N.: Edwards curves and Gaussian hypergeometric series. J. Théor. Nombres Bordx. 28, 115-124 (2016) · Zbl 1411.11061 · doi:10.5802/jtnb.931
[10] Barman, R., Kalita, G.: Certain values of Gaussian hypergeometric series and a family of algebraic curves. Int. J. Number Theory 8, 945-961 (2012) · Zbl 1266.11076 · doi:10.1142/S179304211250056X
[11] Barman, R., Kalita, G.: Hypergeometric functions and a family of algebraic curves. Ramanujan J. 28, 175-185 (2012) · Zbl 1264.11054 · doi:10.1007/s11139-011-9345-7
[12] Barman, R., Kalita, G., Saikia, N.: Hyperelliptic curves and values of Gaussian hypergeometric series. Arch. Math. 102, 345-355 (2014) · Zbl 1323.11044 · doi:10.1007/s00013-014-0633-5
[13] Sadek, M.: Character sums, Gaussian hypergeometric series, and a family of hyperelliptic curves. Int. J. Number Theory 12, 2173-2187 (2016) · Zbl 1357.11120 · doi:10.1142/S1793042116501311
[14] Huff, G.B.: Diophantine problems in geometry and elliptic ternary forms. Duke Math. J. 15, 443-453 (1948) · Zbl 0030.19903 · doi:10.1215/S0012-7094-48-01543-9
[15] Joye, M.; Tibouchi, M.; Vergnaud, D.; Hanrot, G. (ed.); Morain, F. (ed.); Thomé, E. (ed.), Huff’s model for elliptic curves, No. 6197, 234-250 (2010), New York · Zbl 1260.11087 · doi:10.1007/978-3-642-14518-6_20
[16] Wu, H., Feng, R.: Elliptic curves in Huff’s model. Wuhan Univ. J. Nat. Sci. 17, 473-480 (2012) · Zbl 1274.94122 · doi:10.1007/s11859-012-0873-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.