×

Good and semi-stable reductions of Shimura varieties. (Bonne réduction et réduction semi-stable de variétés de Shimura.) (English. French summary) Zbl 1473.11133

Summary: We study variants of the local models constructed by the second author and and X. Zhu [Invent. Math. 194, No. 1, 147–254 (2013; Zbl 1294.14012)] and consider corresponding integral models of Shimura varieties of abelian type. We determine all cases of good, resp. of semi-stable, reduction under tame ramification hypotheses.

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
14G35 Modular and Shimura varieties

Citations:

Zbl 1294.14012

References:

[1] Arzdorf, Kai, On local models with special parahoric level structure, Michigan Math. J., 58, 3, 683-710 (2009) · Zbl 1186.14026 · doi:10.1307/mmj/1260475695
[2] Billey, Sara; Lakshmibai, V., Singular loci of Schubert varieties, 182 (2000), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc., Boston, MA · Zbl 0959.14032 · doi:10.1007/978-1-4612-1324-6
[3] Bourbaki, Nicolas, Lie groups and Lie algebras. Chapters 4-6 (2002), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0983.17001 · doi:10.1007/978-3-540-89394-3
[4] Brion, Michel, Representation theories and algebraic geometry (Montreal, PQ, 1997), 514, Equivariant cohomology and equivariant intersection theory, 1-37 (1998), Kluwer Acad. Publ.: Kluwer Acad. Publ., Dordrecht · Zbl 0946.14008
[5] Bruhat, F.; Tits, J., Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math. Inst. Hautes Études Sci., 60, 197-376 (1984) · Zbl 0597.14041
[6] Bruhat, F.; Tits, J., Groupes algébriques sur un corps local. III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34, 3, 671-698 (1987) · Zbl 0657.20040
[7] Carrell, James B., Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), 56, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, 53-61 (1994), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0818.14020
[8] Conrad, Brian, Autour des schémas en groupes. Vol. I, 42/43, Reductive group schemes, 93-444 (2014), Société Mathématique de France: Société Mathématique de France, Paris · Zbl 1308.14047
[9] Deligne, Pierre, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, XXXIII, 247-289 (1979), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0437.14012
[10] Drinfeld, V. G., Coverings of \(p\)-adic symmetric domains, Funkcional. Anal. i Priložen., 10, 2, 29-40 (1976) · Zbl 0346.14010
[11] Evens, Sam; Mirković, Ivan, Characteristic cycles for the loop Grassmannian and nilpotent orbits, Duke Math. J., 97, 1, 109-126 (1999) · Zbl 1160.22306 · doi:10.1215/S0012-7094-99-09705-3
[12] Faltings, G., The category \(\mathcal{MF}\) in the semistable case, Izv. Ross. Akad. Nauk Ser. Mat., 80, 5, 41-60 (2016) · Zbl 1369.14030 · doi:10.4213/im8490
[13] Genestier, Alain; Tilouine, Jacques, Formes automorphes. II. Le cas du groupe \(\text{GSp}(4), 302\), Systèmes de Taylor-Wiles pour \(\text{GSp}_4, 177-290 (2005)\), Société Mathématique de France: Société Mathématique de France, Paris · Zbl 1142.11036
[14] Gerstein, Larry J., Basic quadratic forms, 90 (2008), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1147.11002 · doi:10.1090/gsm/090
[15] Görtz, Ulrich, On the flatness of models of certain Shimura varieties of PEL-type, Math. Ann., 321, 3, 689-727 (2001) · Zbl 1073.14526 · doi:10.1007/s002080100250
[16] Görtz, Ulrich, On the flatness of local models for the symplectic group, Adv. Math., 176, 1, 89-115 (2003) · Zbl 1051.14027 · doi:10.1016/S0001-8708(02)00062-2
[17] Gross, B., Parahorics
[18] Haines, Thomas J., Harmonic analysis, the trace formula, and Shimura varieties, 4, Introduction to Shimura varieties with bad reduction of parahoric type, 583-642 (2005), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1148.11028
[19] Haines, Thomas J.; Richarz, T., Smooth Schubert varieties in twisted affine Grassmannians (2018) · Zbl 1467.14119
[20] Haines, Thomas J.; Richarz, T., Normality and Cohen-Macaulayness of parahoric local models (2019) · Zbl 1518.14040
[21] Harris, Michael; Taylor, Richard, Regular models of certain Shimura varieties, Asian J. Math., 6, 1, 61-94 (2002) · Zbl 1008.11022 · doi:10.4310/AJM.2002.v6.n1.a4
[22] He, X.; Rapoport, Michael, Stratifications in the reduction of Shimura varieties, Manuscripta Math., 152, 3-4, 317-343 (2017) · Zbl 1432.14023 · doi:10.1007/s00229-016-0863-x
[23] He, Xuhua, Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. (4), 49, 5, 1125-1141 (2016) · Zbl 1375.14166 · doi:10.24033/asens.2305
[24] Iwahori, N.; Matsumoto, H., On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups, Publ. Math. Inst. Hautes Études Sci., 25, 5-48 (1965) · Zbl 0228.20015
[25] Kazhdan, David; Lusztig, George, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53, 2, 165-184 (1979) · Zbl 0499.20035 · doi:10.1007/BF01390031
[26] Kisin, M.; Pappas, Georgios, Integral models of Shimura varieties with parahoric level structure, Publ. Math. Inst. Hautes Études Sci., 128, 121-218 (2018) · Zbl 1470.14049 · doi:10.1007/s10240-018-0100-0
[27] Krämer, N., Local models for ramified unitary groups, Abh. Math. Sem. Univ. Hamburg, 73, 67-80 (2003) · Zbl 1053.14024 · doi:10.1007/BF02941269
[28] Kumar, Shrawan, The nil Hecke ring and singularity of Schubert varieties, Invent. Math., 123, 3, 471-506 (1996) · Zbl 0863.14031 · doi:10.1007/s002220050038
[29] Kumar, Shrawan, Kac-Moody groups, their flag varieties and representation theory, 204 (2002), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc., Boston, MA · Zbl 1026.17030 · doi:10.1007/978-1-4612-0105-2
[30] Levin, Brandon, Local models for Weil-restricted groups, Compositio Math., 152, 12, 2563-2601 (2016) · Zbl 1375.14093 · doi:10.1112/S0010437X1600765X
[31] Malkin, Anton; Ostrik, Viktor; Vybornov, Maxim, The minimal degeneration singularities in the affine Grassmannians, Duke Math. J., 126, 2, 233-249 (2005) · Zbl 1078.14016 · doi:10.1215/S0012-7094-04-12622-3
[32] Milne, James S., The zeta functions of Picard modular surfaces, The points on a Shimura variety modulo a prime of good reduction, 151-253 (1992), Univ. Montréal, Montreal, QC · Zbl 0821.14016
[33] Milne, James S.; Shih, K.-Y., Hodge cycles, motives, and Shimura varieties, 900, Langlands’s construction of the Taniyama group, 229-260 (1982), Springer-Verlag: Springer-Verlag, Berlin-New York · Zbl 0478.12011 · doi:10.1007/978-3-540-38955-2_5
[34] Pappas, Georgios, On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebraic Geom., 9, 3, 577-605 (2000) · Zbl 0978.14023
[35] Pappas, Georgios, Arithmetic models for Shimura varieties, Proceedings of the International Congress of Mathematicians (Rio de Janeiro, 2018). Vol. II, 377-398 (2018), World Sci. Publ.: World Sci. Publ., Hackensack, NJ · Zbl 1443.11112
[36] Pappas, Georgios, On integral models of Shimura varieties · Zbl 0978.14023
[37] Pappas, Georgios; Rapoport, Michael, Local models in the ramified case. I. The EL-case, J. Algebraic Geom., 12, 1, 107-145 (2003) · Zbl 1063.14029 · doi:10.1090/S1056-3911-02-00334-X
[38] Pappas, Georgios; Rapoport, Michael, Twisted loop groups and their affine flag varieties, Adv. Math., 219, 1, 118-198 (2008) · Zbl 1159.22010 · doi:10.1016/j.aim.2008.04.006
[39] Pappas, Georgios; Rapoport, Michael, Local models in the ramified case. III. Unitary groups, J. Inst. Math. Jussieu, 8, 3, 507-564 (2009) · Zbl 1185.14018 · doi:10.1017/S1474748009000139
[40] Pappas, Georgios; Rapoport, Michael; Smithling, Brian, Handbook of moduli. Vol. III, 26, Local models of Shimura varieties, I. Geometry and combinatorics, 135-217 (2013), Int. Press: Int. Press, Somerville, MA · Zbl 1322.14014
[41] Pappas, Georgios; Zhu, X., Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math., 194, 1, 147-254 (2013) · Zbl 1294.14012 · doi:10.1007/s00222-012-0442-z
[42] Rapoport, Michael, Automorphic forms. I, 298, A guide to the reduction modulo \(p\) of Shimura varieties, 271-318 (2005), Société Mathématique de France: Société Mathématique de France, Paris · Zbl 1084.11029
[43] Rapoport, Michael; Viehmann, Eva, Towards a theory of local Shimura varieties, Münster J. Math., 7, 1, 273-326 (2014) · Zbl 1378.11070
[44] Rapoport, Michael; Zink, Th., Period spaces for \(p\)-divisible groups, 141 (1996), Princeton University Press: Princeton University Press, Princeton, NJ · Zbl 0873.14039 · doi:10.1515/9781400882601
[45] Scholze, P.; Weinstein, J., Berkeley lectures on \(p\)-adic geometry (2017)
[46] Stacks Project Authors, The Stacks Project (2019)
[47] Tits, J., Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, XXXIII, Reductive groups over local fields, 29-69 (1979), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0415.20035
[48] Vasiu, Adrian; Zink, Thomas, Purity results for \(p\)-divisible groups and abelian schemes over regular bases of mixed characteristic, Doc. Math., 15, 571-599 (2010) · Zbl 1252.11050
[49] Zhou, R., Mod-\(p\) isogeny classes on Shimura varieties with parahoric level structure (2017)
[50] Zhu, Xinwen, Affine Demazure modules and \(T\)-fixed point subschemes in the affine Grassmannian, Adv. Math., 221, 2, 570-600 (2009) · Zbl 1167.14033 · doi:10.1016/j.aim.2009.01.003
[51] Zhu, Xinwen, On the coherence conjecture of Pappas and Rapoport, Ann. of Math. (2), 180, 1, 1-85 (2014) · Zbl 1300.14042 · doi:10.4007/annals.2014.180.1.1
[52] Zhu, Xinwen, The geometric Satake correspondence for ramified groups, Ann. Sci. École Norm. Sup. (4), 48, 2, 409-451 (2015) · Zbl 1392.11036 · doi:10.24033/asens.2248
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.