×

Infinite horizon multiobjective optimal control of stochastic cooperative linear-quadratic dynamic difference games. (English) Zbl 1472.93201

Summary: This article is concerned with the infinite horizon stochastic cooperative linear-quadratic (LQ) dynamic difference game in both the regular and the indefinite cases. Firstly, due to the constraints imposed on the weighting matrices and the linearity of the dynamic system, the costs are shown to be convex spontaneously for the regular stochastic cooperative LQ difference game, which yields the equivalence between the minimization of the weighted sum of costs and the Pareto optimal control. Secondly, the Pareto optimal control is derived for the regular game on the ground of the solution to the weighted algebraic Riccati equation (WARE) under exact observability, and then Pareto solutions are identified via the optimal feedback gain matrices and the solution to the weighted algebraic Lyapunov equation (WALE). Moreover, a new criterion which is also necessary and sufficient is developed to guarantee the costs to be convex for the indefinite case, and the Pareto optimality is investigated based on the solutions to the weighted generalized algebraic Riccati equation (WGARE) and the weighted generalized algebraic Lyapunov equation (WGALE) combining with the semidefinite programming (SDP). Finally, the fishery management game in the economy is presented to illustrate the obtained results.

MSC:

93E20 Optimal stochastic control
49N10 Linear-quadratic optimal control problems
91A12 Cooperative games
91A15 Stochastic games, stochastic differential games
91A25 Dynamic games
Full Text: DOI

References:

[1] Engwerda, J. C., Necessary and sufficient conditions for Pareto optimal solutions of cooperative differential games, SIAM J. Control Optim., 48, 6, 3859-3881 (2010) · Zbl 1206.49020
[2] Balandin, D. V.; Biryukov, R. S.; Kogan, M. M., Finite-horizon multi-objective generalized \(H_2\) control with transients, Automatica, 106, 27-34 (2019) · Zbl 1429.93108
[3] Désilles, A.; Zidani, H., Pareto front characterization for multiobjective optimal control problems using Hamilton-Jacobi approach, SIAM J. Control Optim., 57, 6, 3884-3910 (2019) · Zbl 1429.49003
[4] 470087
[5] Engwerda, J. C., The regular convex cooperative linear quadratic control problem, Automatica, 44, 9, 2453-2457 (2008) · Zbl 1153.49031
[6] Reddy, P. V.; Engwerda, J. C., Pareto optimality in infinite horizon linear quadratic differential games, Automatica, 69, 6, 1705-1714 (2013) · Zbl 1360.49024
[7] Reddy, P. V.; Engwerda, J. C., Necessary and sufficient conditions for Pareto optimality in infinite horizon cooperative differential games, IEEE Trans. Autom. Control, 59, 9, 2536-2542 (2014) · Zbl 1360.49030
[8] Peng, C. C.; Zhang, W. H., Multiobjective dynamic optimization of cooperative difference games in infinite horizon, IEEE Trans. Syst. Man Cybern (2020)
[9] Balandin, D. V.; Kogan, M. M., Multi-objective generalized \(H_2\) control, Automatica, 99, 317-322 (2019) · Zbl 1406.49043
[10] Michel, P., On the transversality conditions in infinite horizon optimal problems, Econometrica, 50, 4, 975-985 (1982) · Zbl 0483.90026
[11] Vamvoudakis, K. G.; Lewis, F. L.; Hudas, G. R., Multi-agent differential graphical games: Online adaptive learning solution for synchronization with optimality, Automatica, 48, 8, 1598-1611 (2012) · Zbl 1267.93190
[12] Jiao, Q.; Modares, H.; Xu, S. Y.; Lewis, F. L.; Vamvoudakis, K. G., Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control, Automatica, 69, 24-34 (2016) · Zbl 1338.93023
[13] Mazouchi, M.; Naghibi-Sistani, M. B.; Sani, S. K.H., A novel distributed optimal adaptive control algorithm for nonlinear multi-agent differential graphical games, IEEE/CAA J. Autom. Sin., 5, 1, 331-341 (2018)
[14] Lopez, V. G.; Lewis, F. L.; Wan, Y.; Liu, M. S.; Hewer, G.; Estabridis, K., Stability and robustness analysis of minmax solutions for differential graphical games, Automatica, 121, 109177 (2020) · Zbl 1448.91048
[15] Mylvaganam, T.; Sassano, M.; Astolfi, A., Constructive \(\epsilon \)-Nash equilibria for nonzero-sum differential games, IEEE Trans. Autom. Control, 60, 4, 950-965 (2014) · Zbl 1360.91031
[16] Lv, Y. F.; Ren, X. M.; Na, J., Adaptive optimal tracking controls of unknown multi-input systems based on nonzero-sum game theory, J. Frankl. Inst., 356, 15, 8255-8277 (2019) · Zbl 1423.93176
[17] Wonham, W. M., On a matrix Riccati equation of stochastic control, SIAM J. Control Optim., 6, 4, 681-697 (1968) · Zbl 0182.20803
[18] Liu, X. K.; Liu, Q. M.; Li, Y., Finite-time guaranteed cost control for uncertain mean-field stochastic systems, J. Frankl. Inst., 357, 5, 2813-2829 (2020) · Zbl 1451.93410
[19] Li, Z. P.; Fu, M. Y.; Zhang, H. S.; Wu, Z. Z., Mean field stochastic linear quadratic games for continuum-parameterized multi-agent systems, J. Frankl. Inst., 355, 12, 5240-5255 (2018) · Zbl 1395.91032
[20] Chen, S. P.; Li, X. J.; Zhou, X. Y., Stochastic linear quadratic regulators with indefinite control weight costs, SIAM J. Control Optim., 36, 5, 1685-1702 (1998) · Zbl 0916.93084
[21] Luo, C. X.; Li, D. S., Indefinite stochastic LQ control with Markovian jumps via semidefinite programming (I), Proceedings of the 6th World Congress on Intelligent Control and Automation, 636-640 (2006)
[22] Ait Rami, M.; Zhou, X. Y.; Moore, J. B., Well-posedness and attainability of indefinite stochastic linear quadratic control in infinite time horizon, Syst. Control Lett., 41, 2, 123-133 (2000) · Zbl 0985.93060
[23] Peng, S. G., A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28, 4, 966-979 (1990) · Zbl 0712.93067
[24] Ait Rami, M.; Chen, X.; Zhou, X. Y., Discrete-time indefinite LQ control with state and control dependent noises, J. Global Optim., 23, 3-4, 245-265 (2002) · Zbl 1035.49024
[25] Ni, Y. H.; Yiu, K. F.C.; Zhang, H. S.; Zhang, J. F., Delayed optimal control of stochastic LQ problem, SIAM J. Control Optim., 55, 5, 3370-3407 (2017) · Zbl 1373.93383
[26] Zhang, W. H.; Li, Y.; Liu, X. K., Infinite horizon indefinite stochastic linear quadratic control for discrete-time systems, Control Theory Tech., 13, 3, 230-237 (2015) · Zbl 1340.93177
[27] Ni, Y. H.; Li, X.; Zhang, J. F., Indefinite mean-field stochastic linear-quadratic optimal control: from finite horizon to infinite horizon, IEEE Trans. Autom. Control, 60, 11, 3269-3284 (2016) · Zbl 1359.93540
[28] Zhang, W. H.; Xie, L. H.; Chen, B. S., Stochastic \(H_2 / H_\infty\) Control: A Nash Game Approach (2017), CRC Press: CRC Press Boca Raton · Zbl 1403.93003
[29] Mukaidani, H.; Xu, H., Pareto optimal strategy for stochastic weakly coupled large scale systems with state dependent system noise, IEEE Trans. Autom. Control, 54, 9, 2244-2250 (2009) · Zbl 1367.93719
[30] Lin, Y. N.; Zhang, T. L.; Zhang, W. H., Infinite horizon linear quadratic Pareto game of the stochastic singular systems, J. Frankl. Inst., 355, 10, 4436-4452 (2018) · Zbl 1390.93870
[31] Lin, Y. N., Linear quadratic Pareto game of the stochastic systems in infinite horizon, J. Optim. Theory Appl., 183, 2, 671-687 (2019) · Zbl 1425.91050
[32] Chen, B. S.; Lee, H. C.; Wu, C. F., Pareto optimal filter design for nonlinear stochastic fuzzy systems via multiobjective \(H_2 / H_\infty\) optimization, IEEE Trans. Fuzzy Syst., 23, 2, 387-399 (2015)
[33] Wu, C. F.; Chen, B. S.; Zhang, W. H., Multiobjective investment policy for a nonlinear stochastic financial system: a fuzzy approach, IEEE Trans. Fuzzy Syst., 25, 2, 460-474 (2017)
[34] Jiang, X. S.; Tian, S. P.; Zhang, T. L.; Zhang, W. H., Pareto optimal strategy for linear stochastic systems with \(H_\infty\) constraint in finite horizon, Inf. Sci., 512, 1103-1117 (2020) · Zbl 1461.93486
[35] Edgeworth, F. Y., Mathematical psychics: An Essay on the Application of Mathematics to the Moral Sciences (1881), Kegan Paul: Kegan Paul London · Zbl 0005.17402
[36] Pareto, V., Cours d’Économic Politique (1986), Duncker & Humblot: Duncker & Humblot Lausanne
[37] Pareto, V., Manual of Political Economy (1927), Oxford University Press: Oxford University Press Oxford
[38] Miettinmen, K., Nonlinear Multiobjective Optimization (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0949.90082
[39] Penrose, R., A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc., 51, 3, 406-413 (1955) · Zbl 0065.24603
[40] Zheng, J. Y.; Qiu, L., On the existence of a mean-square stabilizing solution to a modified algebraic Riccati equation, Proceedings of the 19th IFAC World Congress, 47, 6988-6993 (2014)
[41] Dragan, V.; Morozan, T.; Stoica, A. M., Mathematical Methods in Robust Control of Discrete Time Linear Stochastic Systems (2010), Springer: Springer New York · Zbl 1183.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.