×

Explanation of the onset of bouncing cycles in isotropic rotor dynamics; a grazing bifurcation analysis. (English) Zbl 1472.70045

Summary: The dynamics associated with bouncing-type partial contact cycles are considered for a 2 degree-of-freedom unbalanced rotor in the rigid-stator limit. Specifically, analytical explanation is provided for a previously proposed criterion for the onset upon increasing the rotor speed \(\Omega\) of single-bounce-per-period periodic motion, namely internal resonance between forward and backward whirling modes. Focusing on the cases of 2 : 1 and 3 : 2 resonances, detailed numerical results for small rotor damping reveal that stable bouncing periodic orbits, which coexist with non-contacting motion, arise just beyond the resonance speed \(\Omega_{} p\):\(q\). The theory of discontinuity maps is used to analyse the problem as a codimension-two degenerate grazing bifurcation in the limit of zero rotor damping and \(\Omega = \Omega_{} p\):\(q\). An analytic unfolding of the map explains all the features of the bouncing orbits locally. In particular, for non-zero damping \(\zeta \), stable bouncing motion bifurcates in the direction of increasing \(\Omega\) speed in a smooth fold bifurcation point that is at rotor speed \(\mathcal{O}(\zeta)\) beyond \(\Omega_{} p\):\(q\). The results provide the first analytic explanation of partial-contact bouncing orbits and has implications for prediction and avoidance of unwanted machine vibrations in a number of different industrial settings.

MSC:

70K50 Bifurcations and instability for nonlinear problems in mechanics
37N05 Dynamical systems in classical and celestial mechanics

References:

[1] Chiba A, Fukao T, Ichikawa O, Oshima M, Takemoto M, Dorrell DG. 2005 Magnetic bearings and bearingless drives. Oxford, UK: Elsevier.
[2] Jacquet-Richardet G et al. 2013 Rotor to stator contacts in turbomachines. Review and application. Mech. Syst. Signal Process. 40, 401-420. (doi:10.1016/j.ymssp.2013.05.010) · doi:10.1016/j.ymssp.2013.05.010
[3] Jansen JD. 1991 Non-linear rotor dynamics as applied to oilwell drillstring vibrations. J. Sound Vib. 147, 115-135. (doi:10.1016/0022-460X(91)90687-F) · doi:10.1016/0022-460X(91)90687-F
[4] Friswell MI, Penny JET, Garvey SD, Lees AW. 2010 Dynamics of rotating machines. Cambridge, UK: Cambridge University Press. · Zbl 1206.70002
[5] Muszynska A. 2005 Rotordynamics. London, UK: Taylor & Francis. · Zbl 1089.70001
[6] Cole MOT, Keogh PS. 2003 Asynchronous periodic contact modes for rotor vibration within an annular clearance. Proc. Inst. Mech. Eng. C 217, 1101-1115. (doi:10.1243/095440603322517126) · doi:10.1243/095440603322517126
[7] Mora K, Budd C, Glendinning P, Keogh P. 2014 Non-smooth Hopf-type bifurcations arising from impact-friction contact events in rotating machinery. Proc. R. Soc. A 470, 20140490. (doi:10.1098/rspa.2014.0490) · Zbl 1371.70006 · doi:10.1098/rspa.2014.0490
[8] Zilli A, Williams RJ, Ewins DJ. 2015 Nonlinear dynamics of a simplified model of an overhung rotor subjected to intermittent annular rubs. J. Eng. Gas Turbines Power 137, 065001. (doi:10.1115/1.4028844) · doi:10.1115/1.4028844
[9] Shaw AD, Champneys AR, Friswell MI. 2016 Asynchronous partial contact motion due to internal resonance in multiple degree-of-freedom rotordynamics. Proc. R. Soc. A 472, 20160303. (doi:10.1098/rspa.2016.0303) · Zbl 1371.70058 · doi:10.1098/rspa.2016.0303
[10] Shaw AD, Champneys AR, Friswell MI. 2019 Normal form analysis of bouncing cycles in isotropic rotor stator contact problems. Int. J. Mech. Sci. 155, 83-97. (doi:10.1016/j.ijmecsci.2019.02.035) · doi:10.1016/j.ijmecsci.2019.02.035
[11] Karpenko EV, Wiercigroch M, Pavlovskaia EE, Neilson RD. 2006 Experimental verification of Jeffcott rotor model with preloaded snubber ring. J. Sound Vib. 298, 907-917. (doi:10.1016/j.jsv.2006.05.044) · doi:10.1016/j.jsv.2006.05.044
[12] von Groll G, Ewins DJ. 2002 A mechanism of low subharmonic response in rotor/stator contact-measurements and simulations. Trans. ASME: J. Vib. Acoust. 124, 350-358. (doi:10.1115/1.1467648) · doi:10.1115/1.1467648
[13] Crespo Sanchez R, Shaw AD, Friswell MI, Champneys AR. 2020 Experimental characterisation of asynchronous partially contactingmotion in a multiple-degree-of-freedom rotor system. Mech. Syst. Signal Proc. 145, 106904. (doi:10.1016/j,ymssp.2020.106904) · doi:10.1016/j,ymssp.2020.106904
[14] Chipato E, Crespo Sanchez R, Shaw AD, Friswell MI. Submitted Experimental study of rotor-stator contact cycles.
[15] di Bernardo M, Budd CJ, Champneys AR, Kowalczyk P. 2008 Piecewise-smooth dynamical systems: theory and applications. New York, NY: Springer. · Zbl 1146.37003
[16] Nordmark AB. 1997 Universal limit mapping in grazing bifurcations. Phys. Rev. E 55, 266-270. (doi:10.1103/PhysRevE.55.266) · doi:10.1103/PhysRevE.55.266
[17] Karpenko EV, Wiercigroch M, Pavlovskaia EE, Cartmell MP. 2002 Piecewise approximate analytical solutions for a Jeffcott rotor with a snubber ring. Int. J. Mech. Sci. 44, 475-488. (doi:10.1016/S0020-7403(01)00108-4) · Zbl 0993.70500 · doi:10.1016/S0020-7403(01)00108-4
[18] Simpson DJW. 2018 A compendium of Hopf-like bifurcations in piecewise-smooth dynamical systems. Phys. Lett. A 382, 2439-2444. (doi:10.1016/j.physleta.2018.06.004) · Zbl 1404.34074 · doi:10.1016/j.physleta.2018.06.004
[19] Nordmark AB, Piiroinen PT. 2009 Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dyn. 58, 85-106. (doi:10.1007/s11071-008-9463-y) · Zbl 1183.70038 · doi:10.1007/s11071-008-9463-y
[20] Fredriksson MH, Nordmark AB. 2000 On normal form calculations in impact oscillators. Proc. R. Soc. A 456, 315-329. (doi:10.1098/rspa.2000.0519) · Zbl 0968.34008 · doi:10.1098/rspa.2000.0519
[21] Piltz SH, Porter MA, Maini PK. 2014 Prey switching with a linear preference trade-off. SIAM J. Appl. Dyn. Sys. 13, 658-682. (doi:10.1137/130910920) · Zbl 1348.37125 · doi:10.1137/130910920
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.