×

A threshold policy to interrupt transmission of West Nile Virus to birds. (English) Zbl 1471.92373

Summary: This paper proposes a model of West Nile Virus (WNV) with a Filippov-type control strategy of culling mosquitoes implemented once the number of infected birds exceeds a threshold level. The long-term dynamical behaviour of the proposed non-smooth system is investigated. It is shown that as the threshold value varies, model solutions ultimately approach either one of two endemic equilibria for two subsystems or a pseudo-equilibrium on the switching surface, which is a novel steady state. The results indicate that a previously chosen level of infected birds can be maintained when the threshold policy and other parameters are chosen properly. Numerical studies show that under the threshold policy, strengthening mosquito culling together with protecting bird population is beneficial to curbing the spread of WNV.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI

References:

[1] Smithburn, K. C.; Hughes, T. P.; Burke, A. W.; Paul, J. H., A neurotropic virus isolated from the blood of a native of uganda, Am. J. Trop. Med. Hyg., 20, 471-492 (1940)
[2] Campbell, L. G.; Martin, A. A.; Lanciotti, R. S.; Gubler, D. J., West nile virus, Lancet Infect. Dis., 2, 519 (2002)
[3] Komar, N.; Langevin, S.; Hinten, S., Experimental infection of north american birds with the new york 1999 strain of west nile virus, emerg, Infect. Dis., 9, 3, 311-322 (2003)
[4] Bowman, C.; Gumel, A. B.; Van den Driessche, P., A mathematical model for assessing control strategies against west nile virus, Bull. Math. Biol., 67, 1107-1133 (2005) · Zbl 1334.92392
[5] Cruz-Pacheco, G.; Esteva, L.; Montaño-Hirose, J. A.; Vargas, C., Modelling the dynamics of west nile virus, Bull. Math. Biol., 67, 1157-1172 (2005) · Zbl 1334.92397
[6] Blayneh, K. W.; Gumel, A. B.; Lenhart, S.; Clayton, T., Backward bifurcation and optimal control in transmission dynamics of west nile virus, Bull. Math. Biol., 72, 1006-1028 (2010) · Zbl 1191.92024
[7] Lanciotti, R. S.; Rohering, J. T.; Deubel, V., Origin of the west nile virus responsible for an outbreak of encephalitis in the northeastern united states, Science, 286, 2333-2337 (1999)
[8] Thomas, D. M.; Urena, B., A model describing the evolution of west nile-like encephalitis in new york city, Math. Comput. Model., 34, 771-781 (2001) · Zbl 0999.92025
[9] Nash, D.; Mostashari, F.; Fine, A., The outbreak of west nile virus infection in the new york city area in 1999, N. Engl. J. Med., 344, 1807-1814 (2001)
[11] Gourley, S. A.; Liu, R.; Wu, J., Eradicting vector-borne diseases via age-structured culling, J. Math. Biol., 54, 309-335 (2007) · Zbl 1115.92041
[12] Tchuenche, J. M.; Bauch, C. T., Can culling to prevent monkeypox infection be counter-productive? scenarios from a theoretical model, J. Biol. Syst., 20, 259-283 (2012) · Zbl 1279.92081
[13] Wonham, M. J.; Beck, T.d.-C.; Lewis, M. A., An epidemiological model for west nile virus: invasion analysis and control applications, Proc. R. Soc. London B, 271, 501-507 (2004)
[14] Kenkre, V. M.; Parmenter, R. R.; Peixoto, I. D.; Sadasiv, L., A theoretical framework for the analysis of the west nile virus epidemic, Math. Comput. Model., 42, 313-324 (2005) · Zbl 1080.92057
[15] Lewis, M.; Renclawowicz, J.; van den Driessche, P., Traveling waves and spread rates for a west nile virus model, Bull. Math. Biol., 68, 3-23 (2006) · Zbl 1334.92414
[16] Jiang, J.; Qiu, Z.; Wu, J.; Zhu, H., Threshold conditions for west nile virus outbreaks, Bull. Math. Biol., 71, 627-647 (2009) · Zbl 1163.92036
[17] Lewis, M.; Renclawowicz, J.; van den Driessche, P.; Wonham, M., A comparison of continuous and discrete-time west nile virus models, Bull. Math. Biol., 68, 491-509 (2006) · Zbl 1334.92413
[18] Ross, R., The Prevention of Malaria (1911), Murray: Murray London
[19] Macdonald, G., The analysis of equilibrium in malaria, Trop. Dis. Bull., 49, 813-828 (1952)
[20] Hu, X.; Liu, Y.; Wu, J., Culling structured hosts to eradicate vector-borne diseases, Math. Biosci. Eng., 325, 496-516 (2009) · Zbl 1176.34100
[21] Simons, R. R.L.; Gourley, S. A., Extinction criteria in stage-structured population models with impulsive culling, SIAM J. Appl. Math., 66, 1853-1870 (2006) · Zbl 1120.34064
[22] Xu, X.; Xiao, Y.; Cheke, R. A., Models of impulsive culling of mosquitoes to interrupt transmission of west nile virus to birds, Appl. Math. Model., 39, 3549-3568 (2015) · Zbl 1443.92188
[23] Xiao, Y.; Xu, X.; Tang, S., Sliding mode control of outbreaks of emerging infectious diseases, Bull. Math. Biol., 74, 2403-2422 (2012) · Zbl 1312.92043
[24] Xiao, Y.; Zhao, T.; Tang, S., Dynamics of an infectious disease with media/ psychology induced non-smooth incidence, Math Biosci Eng., 10, 445-461 (2013) · Zbl 1259.92061
[25] Zhao, T.; Xiao, Y.; Smith?, R. J., Non-smooth plant disease models with economic threshold, Math. Biosci., 241, 34-48 (2013) · Zbl 1309.92077
[26] Wang, A.; Xiao, Y., A filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal.-Hybri., 11, 84-97 (2014) · Zbl 1323.92215
[27] Tang, S.; Liang, J.; Xiao, Y.; Cheke, R. A., Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72, 1061-1080 (2012) · Zbl 1256.34038
[28] Tang, S.; Liang, J., Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge, Nonlinear Anal.-Theor., 76, 165-180 (2013) · Zbl 1256.34037
[29] Yang, J.; Tang, S.; Cheke, R. A., Modelling the regulatory system for diabetes mellitus with a threshold window, Commun. Nonliear Sci., 22, 478-491 (2015)
[30] Cherkas, L., Dulac functions for polynomial autonomous systems on a plane, Diff. Equ., 33, 692-701 (1997) · Zbl 0911.34026
[31] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides (1988), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0664.34001
[32] Utkin, V. I., Sliding Modes in Control and Optimization (1992), Springer: Springer Berlin · Zbl 0748.93044
[33] Baer, S. M.; Kooi, B. W.; Kuznetsov, Y. A.; Thieme, H. R., Multiparametric bifurcation analysis of a basic two-stage population model, SIAM J. Appl. Math., 66, 1339-1365 (2006) · Zbl 1106.34030
[34] Balm, M. N.; Lee, H.; Chiu, L.; Koay, E. S.; Tang, J., A diagnostic polymerase chain reaction assay for Zika virus, J. Med. Virol., 84, 1501-1505 (2012)
[36] Brogdon, W. G.; McAllister, J. C., Insecticide resistance and vector control, Emerg. Infect. Dis., 4, 605-613 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.