×

Actions of skew braces and set-theoretic solutions of the reflection equation. (English) Zbl 1470.16068

Summary: A skew brace, as introduced by L. Guarnieri and L. Vendramin [Math. Comput. 86, No. 307, 2519–2534 (2017; Zbl 1371.16037)], is a set with two group structures interacting in a particular way. When one of the group structures is abelian, one gets back the notion of brace as introduced by W. Rump [Algebra Discrete Math. 2006, No. 2, 127–137 (2006; Zbl 1164.81328)]. Skew braces can be used to construct solutions of the quantum Yang-Baxter equation. In this article, we introduce a notion of action of a skew brace, and show how it leads to solutions of the closely associated reflection equation.

MSC:

16T25 Yang-Baxter equations
20N99 Other generalizations of groups

References:

[1] 1.M.Balagović and S.Kolb, Universal K-matrix for quantum symmetric pairs, J. Reine Angew. Math.747 (2019), 299-353. · Zbl 1425.81058
[2] 2.R. J.Baxter, Partition function of the eight-vertex lattice model, Ann. Phys.70 (1972), 193-228. · Zbl 0236.60070
[3] 3.D.Ben-Zvi, A.Brochier and D.Jordan, Quantum character varieties and braided module categories, Selecta Math. (N.S.)24(5) (2018), 4711-4748. · Zbl 1456.17010
[4] 4.A.Brochier, Cyclotomic associators and finite type invariants for tangles in the solid torus, Algebr. Geom. Topol.13(6) (2013), 3365-3409. · Zbl 1321.57005
[5] 5.V.Caudrelier and Q. C.Zhang, Vector nonlinear Schrödinger equation on the half-line, J. Phys. A45(10) (2012), 105201. · Zbl 1238.35145
[6] 6.V.Caudrelier, N.Crampé and Q. C.Zhang, Set-theoretical reflection equation: classification of reflection maps, J. Phys. A46 (2013), 095203. · Zbl 1267.81208
[7] 7.F.Cedó, E.Jespers and Á.del Río, Involutive Yang-Baxter groups, Trans. Amer. Math. Soc.362(5) (2010), 2541-2558. · Zbl 1188.81115
[8] 8.F.Cedó, E.Jespers and J.Okniński, Retractability of set theoretic solutions of the Yang-Baxter equation, Adv. Math.224(6) (2010), 2472-2484. · Zbl 1192.81202
[9] 9.F.Cedó, E.Jespers and J.Okniński, Braces and the Yang-Baxter equation, Comm. Math. Phys.327(1) (2014), 101-116. · Zbl 1287.81062
[10] 10.I.Cherednik, Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz.61(1) (1984), 35-44. · Zbl 0575.22021
[11] 11.P.Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs, Adv. Math.282 (2015), 93-127. · Zbl 1326.20039
[12] 12.T.tom Dieck, Categories of rooted cylinder ribbons and their representations, J. Reine Angew. Math.494 (1998), 35-63. · Zbl 0949.57007
[13] 13.T.tom Dieck and R.Häring-Oldenburg, Quantum groups and cylinder braiding, Forum Math.10(5) (1998), 619-639. · Zbl 0974.17017
[14] 14.J.Donin, P. P.Kulish and A. I.Mudrov, On a universal solution to the reflection equation, Lett. Math. Phys.63 (2003), 179-194. · Zbl 1042.17011
[15] 15.V. G.Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, (Berkeley, CA, 1986), Volumes 1 and 2, pp. 798-820 (American Mathematical Society, Providence, RI, 1987).
[16] 16.V. G.Drinfeld, On some unsolved problems in quantum group theory, in Quantum groups, (Leningrad, 1990), Lecture Notes in Mathematics, Volume 1510, pp. 1-8 (Springer, Berlin, 1992). · Zbl 0765.17014
[17] 17.P.Etingof, T.Schedler and A.Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J.100(2) (1999), 169-209. · Zbl 0969.81030
[18] 18.T.Gateva-Ivanova, A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys.45(10) (2004), 3828-3858. · Zbl 1065.16037
[19] 19.T.Gateva-Ivanova, Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity, Adv. Math.230(4-6) (2012), 2152-2175. · Zbl 1267.81209
[20] 20.T.Gateva-Ivanova and P.Cameron, Multipermutation solutions of the Yang-Baxter equation, Comm. Math. Phys.309(3) (2012), 583-621. · Zbl 1247.81211
[21] 21.T.Gateva-Ivanova and S.Majid, Set-theoretic solutions of the Yang-Baxter equation, graphs and computations, J. Symbolic Comput.42(11-12) (2007), 1079-1112. · Zbl 1150.17014
[22] 22.T.Gateva-Ivanova and S.Majid, Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra319(4) (2008), 1462-1529. · Zbl 1140.16016
[23] 23.T.Gateva-Ivanova and M.Van den Bergh, Semigroups of I-type, J. Algebra206(1) (1998), 97-112. · Zbl 0944.20049
[24] 24.L.Guarnieri and L.Vendramin, Skew braces and the Yang-Baxter equation, Math. Comp.86(307) (2017), 2519-2534. · Zbl 1371.16037
[25] 25.E.Jespers and A.Van Antwerpen, Left semi-braces and solutions to the Yang-Baxter equation, Forum Math.31(1) (2018), 241-263. · Zbl 1456.16035
[26] 26.S.Kolb, Quantum symmetric pairs and the reflection equation, Algebr. Represent. Theory11(6) (2008), 519-544. · Zbl 1190.17007
[27] 27.S.Kolb, Braided module categories via quantum symmetric pairs, preprint (arXiv:1705.04238, 2017). · Zbl 1486.17026
[28] 28.S.Kolb and J.Stokman, Reflection equation algebras, coideal subalgebras, and their centres, Selecta Math. (N.S.)15(4) (2009), 621-664. · Zbl 1236.17023
[29] 29.J.-H.Lu, M.Yan and Y.-C.Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J.104(1) (2000), 1-18. · Zbl 0960.16043
[30] 30.S.Majid, Foundations of quantum group theory (Cambridge University Press, 1995). · Zbl 0857.17009
[31] 31.V.Regelskis and B.Vlaar, Reflection matrices, coideal subalgebras and generalized Satake diagrams of affine type, preprint (arXiv:1602.08471, 2017). · Zbl 1504.17022
[32] 32.W.Rump, Modules over braces, Algebra Discrete Math. (2) (2006), 127-137. · Zbl 1164.81328
[33] 33.W.Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra307(1) (2007), 153-170. · Zbl 1115.16022
[34] 34.W.Rump, The brace of a classical group, Note Mat.34(1) (2014), 115-144. · Zbl 1344.14029
[35] 35.A.Smoktunowicz and L.Vendramin, On skew braces (with an Appendix by N. Byott and L. Vendramin), J. Comb. Algebra2(1) (2018), 47-86. · Zbl 1416.16037
[36] 36.M.Takeuchi, Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra9 (1981), 841-882. · Zbl 0456.16011
[37] 37.M.Takeuchi, Survey on matched pairs of groups—an elementary approach to the ESS-LYZ theory, Banach Center Publ.61(1) (2003), 305-331. · Zbl 1066.16044
[38] 38.C. N.Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett.19 (1967), 1312-1315. · Zbl 0152.46301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.