×

Entanglement wedge minimum cross-section in holographic massive gravity theory. (English) Zbl 1469.81006

Summary: We study the entanglement wedge cross-section (EWCS) in holographic massive gravity theory, in which a first and second-order phase transition can occur. We find that the mixed state entanglement measures, the EWCS and mutual information (MI) can characterize the phase transitions. The EWCS and MI show exactly the opposite behavior in the critical region, which suggests that the EWCS captures distinct degrees of freedom from that of the MI. More importantly, EWCS, MI and HEE all show the same scaling behavior in the critical region. We give an analytical understanding of this phenomenon. By comparing the quantum information behavior in the thermodynamic phase transition of holographic superconductors, we analyze the relationship and difference between them and provide two mechanisms of quantum information scaling behavior in the thermodynamic phase transition.

MSC:

81P42 Entanglement measures, concurrencies, separability criteria
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
83C45 Quantization of the gravitational field
83E05 Geometrodynamics and the holographic principle
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] A. Osterloh, L. Amico, G. Falci and R. Fazio, Scaling of entanglement close to a quantum phase transitions, Nature416 (2002) 608 [quant-ph/0202029].
[2] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys.80 (2008) 517 [quant-ph/0703044] [INSPIRE]. · Zbl 1205.81009
[3] M. Levin and X.G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett.96 (2006) 110405 [cond-mat/0510613].
[4] Kitaev, A.; Preskill, J., Topological entanglement entropy, Phys. Rev. Lett., 96, 110404 (2006) · doi:10.1103/PhysRevLett.96.110404
[5] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[6] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[7] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090 (2013) · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[8] Dong, X.; Lewkowycz, A.; Rangamani, M., Deriving covariant holographic entanglement, JHEP, 11, 028 (2016) · Zbl 1390.83103 · doi:10.1007/JHEP11(2016)028
[9] G. Vidal and R.F. Werner, A computable measure of entanglement, Phys. Rev. A65 (2002) 032314 [quant-ph/0102117].
[10] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[11] Nishioka, T.; Takayanagi, T., AdS bubbles, entropy and closed string tachyons, JHEP, 01, 090 (2007) · doi:10.1088/1126-6708/2007/01/090
[12] Klebanov, IR; Kutasov, D.; Murugan, A., Entanglement as a probe of confinement, Nucl. Phys. B, 796, 274 (2008) · Zbl 1219.81214 · doi:10.1016/j.nuclphysb.2007.12.017
[13] Pakman, A.; Parnachev, A., Topological entanglement entropy and holography, JHEP, 07, 097 (2008) · doi:10.1088/1126-6708/2008/07/097
[14] Zhang, S-J, Holographic entanglement entropy close to crossover/phase transition in strongly coupled systems, Nucl. Phys. B, 916, 304 (2017) · Zbl 1356.81215 · doi:10.1016/j.nuclphysb.2017.01.010
[15] Zeng, X-X; Li, L-F, Holographic phase transition probed by nonlocal observables, Adv. High Energy Phys., 2016, 6153435 (2016) · Zbl 1366.83067 · doi:10.1155/2016/6153435
[16] Ling, Y.; Liu, P.; Niu, C.; Wu, J-P; Xian, Z-Y, Holographic entanglement entropy close to quantum phase transitions, JHEP, 04, 114 (2016) · Zbl 1398.81165
[17] Ling, Y.; Liu, P.; Wu, J-P, Characterization of quantum phase transition using holographic entanglement entropy, Phys. Rev. D, 93, 126004 (2016) · doi:10.1103/PhysRevD.93.126004
[18] Ling, Y.; Liu, P.; Wu, J-P; Zhou, Z., Holographic metal-insulator transition in higher derivative gravity, Phys. Lett. B, 766, 41 (2017) · Zbl 1397.81164 · doi:10.1016/j.physletb.2016.12.051
[19] Kuang, X-M; Papantonopoulos, E.; Wang, B., Entanglement entropy as a probe of the proximity effect in holographic superconductors, JHEP, 05, 130 (2014) · doi:10.1007/JHEP05(2014)130
[20] Guo, H.; Kuang, X-M; Wang, B., Holographic entanglement entropy and complexity in Stückelberg superconductor, Phys. Lett. B, 797, 134879 (2019) · doi:10.1016/j.physletb.2019.134879
[21] Mahapatra, S., Interplay between the holographic QCD phase diagram and mutual & n-partite information, JHEP, 04, 137 (2019) · doi:10.1007/JHEP04(2019)137
[22] Dudal, D.; Mahapatra, S., Interplay between the holographic QCD phase diagram and entanglement entropy, JHEP, 07, 120 (2018) · Zbl 1395.81283 · doi:10.1007/JHEP07(2018)120
[23] A. Dey, S. Mahapatra and T. Sarkar, Thermodynamics and entanglement entropy with Weyl corrections, Phys. Rev. D94 (2016) 026006 [arXiv:1512.07117] [INSPIRE]. · Zbl 1388.83222
[24] Dong, X., The gravity dual of Renyi entropy, Nature Commun., 7, 12472 (2016) · doi:10.1038/ncomms12472
[25] Takayanagi, T.; Umemoto, K., Entanglement of purification through holographic duality, Nature Phys., 14, 573 (2018) · doi:10.1038/s41567-018-0075-2
[26] Nguyen, P.; Devakul, T.; Halbasch, MG; Zaletel, MP; Swingle, B., Entanglement of purification: from spin chains to holography, JHEP, 01, 098 (2018) · Zbl 1384.81117 · doi:10.1007/JHEP01(2018)098
[27] Kudler-Flam, J.; Ryu, S., Entanglement negativity and minimal entanglement wedge cross sections in holographic theories, Phys. Rev. D, 99, 106014 (2019) · doi:10.1103/PhysRevD.99.106014
[28] Kusuki, Y.; Kudler-Flam, J.; Ryu, S., Derivation of holographic negativity in AdS_3/CFT_2, Phys. Rev. Lett., 123, 131603 (2019) · doi:10.1103/PhysRevLett.123.131603
[29] Dutta, S.; Faulkner, T., A canonical purification for the entanglement wedge cross-section, JHEP, 03, 178 (2021) · Zbl 1461.81104 · doi:10.1007/JHEP03(2021)178
[30] Tamaoka, K., Entanglement wedge cross section from the dual density matrix, Phys. Rev. Lett., 122, 141601 (2019) · doi:10.1103/PhysRevLett.122.141601
[31] Yang, R-Q; Zhang, C-Y; Li, W-M, Holographic entanglement of purification for thermofield double states and thermal quench, JHEP, 01, 114 (2019) · Zbl 1409.81132 · doi:10.1007/JHEP01(2019)114
[32] Ghodrati, M.; Kuang, X-M; Wang, B.; Zhang, C-Y; Zhou, Y-T, The connection between holographic entanglement and complexity of purification, JHEP, 09, 009 (2019) · Zbl 1423.83071 · doi:10.1007/JHEP09(2019)009
[33] Huang, Y-f; Shi, Z-j; Niu, C.; Zhang, C-y; Liu, P., Mixed state entanglement for holographic axion model, Eur. Phys. J. C, 80, 426 (2020) · doi:10.1140/epjc/s10052-020-7921-y
[34] G. Fu, P. Liu, H. Gong, X.-M. Kuang and J.-P. Wu, Holographic informational properties for a specific Einstein-Maxwell-dilaton gravity theory, Phys. Rev. D104 (2021) 026016 [arXiv:2007.06001] [INSPIRE].
[35] Y.-Z. Li, C.-Y. Zhang and X.-M. Kuang, Entanglement wedge cross section with Gauss-Bonnet corrections and thermal quench, arXiv:2102.12171 [INSPIRE].
[36] H. Gong, P. Liu, G. Fu, X.-M. Kuang and J.-P. Wu, Informational properties of holographic Lifshitz field theory, Chin. Phys. C45 (2021) 065101 [arXiv:2009.00450] [INSPIRE].
[37] Liu, P.; Niu, C.; Wu, J-P, The effect of anisotropy on holographic entanglement entropy and mutual information, Phys. Lett. B, 796, 155 (2019) · doi:10.1016/j.physletb.2019.07.035
[38] Liu, P.; Ling, Y.; Niu, C.; Wu, J-P, Entanglement of purification in holographic systems, JHEP, 09, 071 (2019) · Zbl 1423.81038
[39] Lala, A., Entanglement measures for nonconformal D-branes, Phys. Rev. D, 102, 126026 (2020) · doi:10.1103/PhysRevD.102.126026
[40] N. Bao and I.F. Halpern, Conditional and multipartite entanglements of purification and holography, Phys. Rev. D99 (2019) 046010 [arXiv:1805.00476] [INSPIRE].
[41] Umemoto, K.; Zhou, Y., Entanglement of purification for multipartite states and its holographic dual, JHEP, 10, 152 (2018) · Zbl 1402.81233 · doi:10.1007/JHEP10(2018)152
[42] Umemoto, K., Quantum and classical correlations inside the entanglement wedge, Phys. Rev. D, 100, 126021 (2019) · doi:10.1103/PhysRevD.100.126021
[43] Akers, C.; Rath, P., Entanglement wedge cross sections require tripartite entanglement, JHEP, 04, 208 (2020) · Zbl 1436.81108 · doi:10.1007/JHEP04(2020)208
[44] Jain, P.; Mahapatra, S., Mixed state entanglement measures as probe for confinement, Phys. Rev. D, 102, 126022 (2020) · doi:10.1103/PhysRevD.102.126022
[45] Agón, CA; De Boer, J.; Pedraza, JF, Geometric aspects of holographic bit threads, JHEP, 05, 075 (2019) · Zbl 1416.83094 · doi:10.1007/JHEP05(2019)075
[46] Espíndola, R.; Guijosa, A.; Pedraza, JF, Entanglement wedge reconstruction and entanglement of purification, Eur. Phys. J. C, 78, 646 (2018) · doi:10.1140/epjc/s10052-018-6140-2
[47] J. Kumar Basak, V. Malvimat, H. Parihar, B. Paul and G. Sengupta, On minimal entanglement wedge cross section for holographic entanglement negativity, arXiv:2002.10272 [INSPIRE].
[48] J. Kumar Basak, H. Parihar, B. Paul and G. Sengupta, Covariant holographic negativity from the entanglement wedge in AdS_3/CFT_2, arXiv:2102.05676 [INSPIRE].
[49] Babaei Velni, K.; Mohammadi Mozaffar, MR; Vahidinia, MH, Some aspects of entanglement wedge cross-section, JHEP, 05, 200 (2019) · Zbl 1416.81164 · doi:10.1007/JHEP05(2019)200
[50] A. Saha and S. Gangopadhyay, Holographic study of entanglement and complexity for mixed states, Phys. Rev. D103 (2021) 086002 [arXiv:2101.00887] [INSPIRE].
[51] Babaei Velni, K.; Mohammadi Mozaffar, MR; Vahidinia, MH, Evolution of entanglement wedge cross section following a global quench, JHEP, 08, 129 (2020) · Zbl 1454.83051 · doi:10.1007/JHEP08(2020)129
[52] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[53] Sekino, Y.; Susskind, L., Fast scramblers, JHEP, 10, 065 (2008) · doi:10.1088/1126-6708/2008/10/065
[54] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106 (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[55] Donos, A.; Hartnoll, SA, Interaction-driven localization in holography, Nature Phys., 9, 649 (2013) · doi:10.1038/nphys2701
[56] M. Blake, Universal charge diffusion and the butterfly effect in holographic theories, Phys. Rev. Lett.117 (2016) 091601 [arXiv:1603.08510] [INSPIRE].
[57] M. Blake, Universal diffusion in incoherent black holes, Phys. Rev. D94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].
[58] Ling, Y.; Liu, P.; Wu, J-P, Holographic butterfly effect at quantum critical points, JHEP, 10, 025 (2017) · Zbl 1383.81243 · doi:10.1007/JHEP10(2017)025
[59] Ling, Y.; Liu, P.; Wu, J-P, Note on the butterfly effect in holographic superconductor models, Phys. Lett. B, 768, 288 (2017) · doi:10.1016/j.physletb.2017.03.010
[60] Wu, S-F; Wang, B.; Ge, X-H; Tian, Y., Collective diffusion and quantum chaos in holography, Phys. Rev. D, 97, 106018 (2018) · doi:10.1103/PhysRevD.97.106018
[61] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
[62] Blake, M.; Tong, D., Universal resistivity from holographic massive gravity, Phys. Rev. D, 88, 106004 (2013) · doi:10.1103/PhysRevD.88.106004
[63] M. Blake, D. Tong and D. Vegh, Holographic lattices give the graviton an effective mass, Phys. Rev. Lett.112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].
[64] R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
[65] de Rham, C., Massive gravity, Living Rev. Rel., 17, 7 (2014) · Zbl 1320.83018 · doi:10.12942/lrr-2014-7
[66] Baggioli, M.; Pujolàs, O., Electron-phonon interactions, metal-insulator transitions, and holographic massive gravity, Phys. Rev. Lett., 114, 251602 (2015) · doi:10.1103/PhysRevLett.114.251602
[67] Alberte, L.; Baggioli, M.; Khmelnitsky, A.; Pujolàs, O., Solid holography and massive gravity, JHEP, 02, 114 (2016) · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[68] Zeng, X-X; Zhang, H.; Li, L-F, Phase transition of holographic entanglement entropy in massive gravity, Phys. Lett. B, 756, 170 (2016) · Zbl 1400.83040 · doi:10.1016/j.physletb.2016.03.013
[69] R.-G. Cai, Y.-P. Hu, Q.-Y. Pan and Y.-L. Zhang, Thermodynamics of black holes in Massive Gravity, Phys. Rev. D91 (2015) 024032 [arXiv:1409.2369] [INSPIRE].
[70] Xu, J.; Cao, L-M; Hu, Y-P, P-V criticality in the extended phase space of black holes in massive gravity, Phys. Rev. D, 91, 124033 (2015) · doi:10.1103/PhysRevD.91.124033
[71] P. Liu and J.-P. Wu, Mixed state entanglement and thermal phase transitions, arXiv:2009.01529 [INSPIRE].
[72] M.A. Nielsen and I. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2002), p. 558. · Zbl 1049.81015
[73] Boyd, JP, Chebyshev and Fourier spectral methods (2001), U.S.A.: Dover Publication, U.S.A. · Zbl 0994.65128
[74] R. Brito, V. Cardoso and P. Pani, Superradiance: new frontiers in black hole physics, Lect. Notes Phys.906 (2015) pp.1 [arXiv:1501.06570] [INSPIRE].
[75] R.-G. Cai, L. Li, L.-F. Li and R.-Q. Yang, Introduction to holographic superconductor models, Sci. China Phys. Mech. Astron.58 (2015) 060401 [arXiv:1502.00437] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.