×

Weinstock inequality in higher dimensions. (English) Zbl 1468.35038

Summary: We prove that the Weinstock inequality for the first nonzero Steklov eigenvalue holds in \(\mathbb{R}^n\), for \(n \geq 3\), in the class of convex sets with prescribed surface area. The key result is a sharp isoperimetric inequality involving simultaneously the surface area, the volume and the boundary momentum of convex sets. As a by-product, we also obtain some isoperimetric inequalities for the first Wentzell eigenvalue.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P15 Estimates of eigenvalues in context of PDEs
47J30 Variational methods involving nonlinear operators

References:

[1] M. F. Betta, F. Brock, A. Mercaldo, M. R. Posteraro, A weighted isoperimetric inequality and applications to symmetrization. J. Inequal. Appl. 4 (1999), no. 3, 215-240. · Zbl 1029.26018
[2] F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z. Angew. Math. Mech. 81 (2001), no. 1, 6-71. · Zbl 0971.35055
[3] L. Brasco, G. De Philippis, Spectral inequalities in quantitative form, in Shape optimization and spectral theory, A. Henrot, Editor, De Gruyter Open, 2017, 201-281. · Zbl 1373.49051
[4] L. Brasco, G. De Philippis, B. Ruffini, Spectral optimization for the Stekloff-Laplacian: the stability issue. J. Funct. Anal. 262 (2012), no. 11, 4675-4710. · Zbl 1245.35076
[5] G. Coclite, A. Favini, C. Gal, G. R. Goldstein, J. Goldstein, E. Obrecht, S. Ro-manelli, The role of Wentzell boundary conditions in linear and nonlinear anal-ysis. Advances in nonlinear analysis: theory methods and applications, Math. Probl. Eng. Aerosp. Sci., 3, Camb. Sci. Publ., Cambridge, 2009, 277-289.
[6] B. Colbois, E. Dryden, A. El Soufi, Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds. Bull. Lond. Math. Soc. 42 (2010), no. 1, 96-108. · Zbl 1187.58027
[7] B. Colbois, A. El Soufi, A. Girouard, Isoperimetric control of the Steklov spec-trum. J. Funct. Anal. 261 (2011), no. 5, 1384-1399. · Zbl 1235.58020
[8] L. Esposito, N. Fusco, C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) IV (2005), 619-651. · Zbl 1170.52300
[9] P. Freitas, D. Krejcirik, The first Robin eigenvalue with negative boundary pa-rameter. Adv. Math. 280 (2015), 322-339. · Zbl 1317.35151
[10] M. Dambrine, D. Kateb, J. Lamboley, An extremal eigenvalue problem for the Wentzell-Laplace operator. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 2, 409-450. · Zbl 1347.35186
[11] A. Fraser, R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226 (2011), no. 5, 4011-4030. · Zbl 1215.53052
[12] A. Fraser, R. Schoen, Shape optimization for the Steklov problem in higher dimensions. Adv. Math. 348 (2019), 146-162. · Zbl 1419.35139
[13] C. Gerhadt, Flow of nonconvex hypersurfaces into spheres. J. Differential Ge-ometry 32 (1990), 299-314. · Zbl 0708.53045
[14] A. Girouard, I. Polterovich, Spectral geometry of the Steklov problem. J. Spectr. Theory 7 (2017), no. 2, 321-359. · Zbl 1378.58026
[15] A. Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. J. Funct. Anal. 261 (2011), no. 12, 3419-3436. · Zbl 1232.58023
[16] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. · Zbl 1109.35081
[17] A. Henrot, M. Pierre, Variation et optimisation de formes. Une analyse géométrique. Mathématiques & Applications (Berlin), 48. Springer, Berlin, 2005. · Zbl 1098.49001
[18] J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques ho-mogènes. C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1645-A1648. · Zbl 0224.73083
[19] J. Hersch, L. E. Payne, M. M. Schiffer, Some inequalities for Stekloff eigenvalues. Arch. Rational Mech. Anal. 57 (1975), 99-114. · Zbl 0315.35069
[20] G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geometry 59 (2001), 353-437. · Zbl 1055.53052
[21] N. Ikeda, On the construction of two-dimensional diffusion processes satisfying Wentzell’s boundary conditions and its application to boundary value problems. Mem. College Sci. Univ. Kyoto Ser. A Math. 33, Number 3 (1961), 367-427. · Zbl 0102.13903
[22] A. Ros, Compact hypersurfaces with constant higher order mean curvature. Rev. Mat. Iberoamericana 3 (1987), 447-453. · Zbl 0673.53003
[23] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Cambridge Univer-sity Press, 1993. · Zbl 0798.52001
[24] J. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205 (1990), 355-372. · Zbl 0691.35048
[25] A. D. Ventcel’, On boundary conditions for multi-dimensional diffusion pro-cesses. Theor. Probability Appl. 4 (1959), 164-177. · Zbl 0089.13404
[26] R. Weinstock, Inequalities for a Classical Eigenvalue Problem, Department of Math., Stanford Univ., Tech. Rep. 37 (1954). · Zbl 0056.09801
[27] R. Weinstock, Inequalities for a classical eigenvalue problem. Journal of Rational Mechanics and Analysis 3 (1954), 745-753. · Zbl 0056.09801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.