×

Comparison of information structures for zero-sum games and a partial converse to Blackwell ordering in standard Borel spaces. (English) Zbl 1466.91040

Summary: In statistical decision theory involving a single decision maker, an information structure is said to be better than another one if for any cost function involving a hidden state variable and an action variable which is restricted to be conditionally independent from the state given some measurement, the solution value under the former is not worse than that under the latter. For finite spaces, a theorem due to Blackwell leads to a complete characterization on when one information structure is better than another. For stochastic games, in general, such an ordering is not possible since additional information can lead to equilibria perturbations with positive or negative values to a player. However, for zero-sum games in a finite probability space, M. Pȩski [Games Econ. Behav. 62, No. 2, 732–735 (2008; Zbl 1137.91307)] introduced a complete characterization of ordering of information structures. In this paper, we obtain an infinite-dimensional (standard Borel) generalization of Pȩski’s result. A corollary is that more information cannot hurt a decision maker taking part in a zero-sum game. We establish two supporting results which are essential and explicit though modest improvements on prior literature: (i) a partial converse to Blackwell’s ordering in the standard Borel setup and (ii) an existence result for equilibria in zero-sum games with incomplete information.

MSC:

91A27 Games with incomplete information, Bayesian games
91A15 Stochastic games, stochastic differential games
91A10 Noncooperative games

Citations:

Zbl 1137.91307

References:

[1] R. Aumann, Correlated equilibrium as an expression of Bayesian rationality, Econometrica, 55 (1987), pp. 1-18. · Zbl 0633.90094
[2] T. Başar, Stochastic differential games and intricacy of information structures, in Dynamic Games in Economics, J. Haunschmied, V. M. Veliov, and S. Wrzaczek, eds., Dynamic Modeling and Econometrics in Economics Finance 16, Springer, Berlin, pp. 23-49, https://doi.org/10.1007/978-3-642-54248-0_2. · Zbl 1312.91019
[3] T. Başar and Y.-C. Ho, Informational properties of the Nash solutions of two stochastic nonzero-sum games, J. Econom. Theory, 7 (1974), pp. 370-387.
[4] T. Başar and G. Olsder, Dynamic Noncooperative Game Theory, SIAM, Philadelphia, 1999. · Zbl 0946.91001
[5] E. J. Balder, On ws-convergence of product measures, Math. Oper. Res., 26 (2001), pp. 494-518. · Zbl 1073.60500
[6] B. Bassan, O. Gossner, M. Scarsini, and S. Zamir, Positive value of information in games, Internat. J. Game Theory, 32 (2003), pp. 17-31. · Zbl 1101.91312
[7] D. Blackwell, Equivalent comparison of experiments, Ann. Math. Stat., 24 (1953), pp. 265-272. · Zbl 0050.36004
[8] J.-F. Mertens, S. Sorin, and S. Zamir, Repeated Games, Cambridge University Press, Cambridge, 2015. · Zbl 1336.91005
[9] C. Boll, Comparison of Experiments in the Infinite Case, Ph.D. dissertation, Stanford University, 1955.
[10] V. S. Borkar, White-noise representations in stochastic realization theory, SIAM J. Control Optim., 31 (1993), pp. 1093-1102. · Zbl 0788.93081
[11] L. L. Cam, Comparison of experiments-A short review, Statistics, Probability and Game Theory Papers in Honor of David Blackwell, T. Ferguson and L. Shapley, eds., IMS Lecture Notes Monograph Series, IMS, Chennai, India, 1996.
[12] P. Cartier, J. M. G. Fell, and P.-A. Meyer, Comparaison, des mesures portées par un ensemble convexe compact, Bull. Soc. Math. France, 92 (1964), pp. 435-445. · Zbl 0154.39402
[13] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York, 1991. · Zbl 0762.94001
[14] B. De Meyer, E. Lehrer, and D. Rosenberg, Evaluating information in zero-sum games with incomplete information on both sides, Math. Oper. Res., 34 (2010), pp. 851-863. · Zbl 1232.91009
[15] R. M. Dudley, Real Analysis and Probability, 2nd ed., Cambridge University Press, Cambridge, 2002. · Zbl 1023.60001
[16] E. S. E. Lehrer, D. Rosenberg, Signaling and mediation in games with common interests, Games Econom. Behav., 68 (2006), pp. 670-682. · Zbl 1200.91049
[17] K. Fan, Minimax theorems, Proc. Natl. Acad. Sci. USA, 39 (1953), pp. 42-47. · Zbl 0050.06501
[18] F. Forges, Five legitimate definitions of correlated equilibrium in games with incomplete information, Theory Decis., 35 (1993), pp. 277-310. · Zbl 0786.90095
[19] I. I. Gihman and A. V. Skorohod, Controlled Stochastic Processes, Springer Science & Business Media, New York, 2012. · Zbl 0291.60019
[20] O. Gossner and J.-F. Mertens, The Value of Information in Zero-Sum Games, preprint, 2001.
[21] J. Hirshleifer, The private and social value of information and the reward to inventive activity, Amer. Econ. Rev., 61 (1971), pp. 561-574.
[22] I. Hogeboom-Burr and S. Yüksel, Comparison of information structures for zero-sum games in standard Borel spaces, in IEEE International Symposium on Information Theory, 2020.
[23] M. I. Kamien, Y. Tauman, and S. Zamir, On the value of information in a strategic conflict, Games Econom. Behav., 2 (1990), pp. 129-153. · Zbl 0754.90068
[24] M. Kandori, The use of information in repeated games with imperfect monitoring, Rev. Econ. Stud., 59 (1992), pp. 581-593. · Zbl 0763.90110
[25] M. Kandori and I. Obara, Less is more: An observability paradox in repeated games, Internat. J. Game Theory, 34 (2006), pp. 475-493. · Zbl 1154.91310
[26] A. Kloosterman, Public information in Markov games, J. Econom. Theory, 157 (2015), pp. 28-48. · Zbl 1330.91026
[27] H. Langen, Convergence of dynamic programming models, Math. Oper. Res., 6 (1981), pp. 493-512. · Zbl 0496.90085
[28] E. Lehrer, D. Rosenberg, and E. Shmaya, Signaling and mediation in games with common interests, Games Econom. Behav., 68 (2010), pp. 670-682. · Zbl 1200.91049
[29] B. D. Meyer, E. Lehrer, and D. Rosenberg, Two remarks on Blackwell’s theorem, J. Appl. Probab., 45 (2008), pp. 580-586. · Zbl 1141.62004
[30] P. R. Milgrom and R. J. Weber, Distributional strategies for games with incomplete information, Math. Oper. Res., 10 (1985), pp. 619-632. · Zbl 0582.90106
[31] H. Moulin, Advanced Game Theory, http://www.owlnet.rice.edu/ econ440/notes/GTchap12.pdf, 2009.
[32] M. Peͅski, F. Gensbittel, and J. Renault, Value-Based Distance between the Information Structures, preprint, https://arxiv.org/abs/1908.01008, 2019.
[33] M. Peͅski, Comparison of information structures in zero-sum games, Games Econom. Behav., 62 (2008), pp. 732-735. · Zbl 1137.91307
[34] M. Raginsky, Shannon meets Blackwell and Le Cam: Channels, codes, and statistical experiments, in 2011 IEEE International Symposium on Information Theory Proceedings, IEEE, New York, 2011, pp. 1220-1224.
[35] R. Rockafellar, Convex Analysis, no. 28, Princeton University Press, Princeton, NJ, 1970. · Zbl 0193.18401
[36] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991. · Zbl 0867.46001
[37] N. Saldi and S. Yüksel, Geometry of Information Structures, Strategic Measures and Associated Control Topologies, preprint, https://arxiv.org/abs/2010.07377, 2020.
[38] M. Schäl, On dynamic programming: Compactness of the space of policies, Stoch. Process. Appl., 3 (1975), pp. 345-364. · Zbl 0317.60025
[39] R. Serfozo, Convergence of Lebesgue integrals with varying measures, Sankhya A, 44 (1982), pp. 380-402. · Zbl 0568.28005
[40] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Stat., 36 (1965), pp. 423-439. · Zbl 0135.18701
[41] E. Torgersen, Comparison of Statistical Experiments, Vol. 36, Cambridge University Press, Cambridge, 1991. · Zbl 0732.62009
[42] J. von Neumann, Zur theorie der gesellschaftsspiele, Math. Ann., 100 (1928), pp. 295-320. · JFM 54.0543.02
[43] H. Witsenhausen, Equivalent stochastic control problems, Math. Control Signals Systems, 1 (1988), pp. 3-11. · Zbl 0659.93078
[44] S. Yüksel, A universal dynamic program and refined existence results for decentralized stochastic control, SIAM J. Control Optim., 58 (2020), pp. 2711-2739. · Zbl 1451.93419
[45] S. Yüksel and T. Başar, Stochastic Networked Control Systems: Stabilization and Optimization under Information Constraints, Springer, New York, 2013. · Zbl 1280.93003
[46] S. Yüksel and T. Linder, Optimization and convergence of observation channels in stochastic control, SIAM J. Control Optim., 50 (2012), pp. 864-887. · Zbl 1244.93179
[47] S. Yüksel and N. Saldi, Convex analysis in decentralized stochastic control, strategic measures and optimal solutions, SIAM J. Control Optim., 55 (2017), pp. 1-28. · Zbl 1352.93108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.