×

Logarithmic corrections to black hole entropy in matter coupled \(\mathcal{N} \geq 1\) Einstein-Maxwell supergravity. (English) Zbl 1466.83137

Summary: We calculate the first three Seeley-DeWitt coefficients for fluctuation of the massless fields of a \(\mathcal{N} = 2\) Einstein-Maxwell supergravity theory (EMSGT) distributed into different multiplets in \(d = 4\) space-time dimensions. By utilizing the Seeley-DeWitt data in the quantum entropy function formalism, we then obtain the logarithmic correction contribution of individual multiplets to the entropy of extremal Kerr-Newman family of black holes. Our results allow us to find the logarithmic entropy corrections for the extremal black holes in a fully matter coupled \(\mathcal{N} = 2 \), \(d = 4\) EMSGT, in a particular class of \(\mathcal{N} = 1\), \(d = 4\) EMSGT as consistent decomposition of \(\mathcal{N} = 2\) multiplets \(( \mathcal{N} = 2 \rightarrow \mathcal{N} = 1)\) and in \(\mathcal{N} \geq 3 \), \(d = 4\) EMSGTs by decomposing them into \(\mathcal{N} = 2\) multiplets \(( \mathcal{N} \geq 3 \rightarrow \mathcal{N} = 2)\). For completeness, we also obtain logarithmic entropy correction results for the non-extremal Kerr-Newman black holes in the matter coupled \(\mathcal{N} \geq 1 \), \(d = 4\) EMSGTs by employing the same Seeley-DeWitt data into a different Euclidean gravity approach developed in [A. Sen, J. High Energy Phys. 2013, No. 4, Paper No. 156, 33 p. (2013; Zbl 1342.83207)].

MSC:

83E50 Supergravity
83C22 Einstein-Maxwell equations
83C47 Methods of quantum field theory in general relativity and gravitational theory
83C57 Black holes
81P17 Quantum entropies

Citations:

Zbl 1342.83207

References:

[1] Bekenstein, JD, Black holes and entropy, Phys. Rev. D, 7, 2333 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[2] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE]. · Zbl 1378.83040
[3] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[4] Banerjee, S.; Gupta, RK; Sen, A., Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function, JHEP, 03, 147 (2011) · Zbl 1301.81182 · doi:10.1007/JHEP03(2011)147
[5] Banerjee, S.; Gupta, RK; Mandal, I.; Sen, A., Logarithmic Corrections to N = 4 and N = 8 Black Hole Entropy: A One Loop Test of Quantum Gravity, JHEP, 11, 143 (2011) · Zbl 1306.83038 · doi:10.1007/JHEP11(2011)143
[6] Sen, A., Logarithmic Corrections to N = 2 Black Hole Entropy: An Infrared Window into the Microstates, Gen. Rel. Grav., 44, 1207 (2012) · Zbl 1241.83051 · doi:10.1007/s10714-012-1336-5
[7] Gupta, RK; Lal, S.; Thakur, S., Logarithmic corrections to extremal black hole entropy in \(\mathcal{N} = 2, 4\) and 8 supergravity, JHEP, 11, 072 (2014) · Zbl 1333.83086 · doi:10.1007/JHEP11(2014)072
[8] Ferrara, S.; Marrani, A., Generalized Mirror Symmetry and Quantum Black Hole Entropy, Phys. Lett. B, 707, 173 (2012) · doi:10.1016/j.physletb.2011.12.005
[9] Keeler, C.; Larsen, F.; Lisbao, P., Logarithmic Corrections to N ≥ 2 Black Hole Entropy, Phys. Rev. D, 90, 043011 (2014) · doi:10.1103/PhysRevD.90.043011
[10] Larsen, F.; Lisbao, P., Quantum Corrections to Supergravity on AdS_2 × S^2, Phys. Rev. D, 91, 084056 (2015) · doi:10.1103/PhysRevD.91.084056
[11] Karan, S.; Banerjee, G.; Panda, B., Seeley-DeWitt Coefficients in \(\mathcal{N} = 2\) Einstein-Maxwell Supergravity Theory and Logarithmic Corrections to \(\mathcal{N} = 2\) Extremal Black Hole Entropy, JHEP, 08, 056 (2019) · Zbl 1421.83133 · doi:10.1007/JHEP08(2019)056
[12] Banerjee, G.; Karan, S.; Panda, B., Logarithmic correction to the entropy of extremal black holes in \(\mathcal{N} = 1\) Einstein-Maxwell supergravity, JHEP, 01, 090 (2021) · Zbl 1459.83065 · doi:10.1007/JHEP01(2021)090
[13] Sen, A., Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions, Gen. Rel. Grav., 44, 1947 (2012) · Zbl 1253.83003 · doi:10.1007/s10714-012-1373-0
[14] Bhattacharyya, S.; Panda, B.; Sen, A., Heat Kernel Expansion and Extremal Kerr-Newmann Black Hole Entropy in Einstein-Maxwell Theory, JHEP, 08, 084 (2012) · Zbl 1397.83052 · doi:10.1007/JHEP08(2012)084
[15] Chowdhury, A.; Gupta, RK; Lal, S.; Shyani, M.; Thakur, S., Logarithmic Corrections to Twisted Indices from the Quantum Entropy Function, JHEP, 11, 002 (2014) · Zbl 1333.83218 · doi:10.1007/JHEP11(2014)002
[16] Jeon, I.; Lal, S., Logarithmic Corrections to Entropy of Magnetically Charged AdS4 Black Holes, Phys. Lett. B, 774, 41 (2017) · Zbl 1403.83050 · doi:10.1016/j.physletb.2017.09.026
[17] Sen, A., Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions, JHEP, 04, 156 (2013) · Zbl 1342.83207 · doi:10.1007/JHEP04(2013)156
[18] Charles, AM; Larsen, F., Universal corrections to non-extremal black hole entropy in \(\mathcal{N} \) ≥ 2 supergravity, JHEP, 06, 200 (2015) · Zbl 1388.83771 · doi:10.1007/JHEP06(2015)200
[19] Castro, A.; Godet, V.; Larsen, F.; Zeng, Y., Logarithmic Corrections to Black Hole Entropy: the Non-BPS Branch, JHEP, 05, 079 (2018) · Zbl 1391.83103 · doi:10.1007/JHEP05(2018)079
[20] Mohaupt, T., Black hole entropy, special geometry and strings, Fortsch. Phys., 49, 3 (2001) · Zbl 0985.83001 · doi:10.1002/1521-3978(200102)49:1/3<3::AID-PROP3>3.0.CO;2-#
[21] Sen, A., Entropy Function and AdS_2/CFT_1Correspondence, JHEP, 11, 075 (2008) · doi:10.1088/1126-6708/2008/11/075
[22] Sen, A., Quantum Entropy Function from AdS_2/CFT_1Correspondence, Int. J. Mod. Phys. A, 24, 4225 (2009) · Zbl 1175.83045 · doi:10.1142/S0217751X09045893
[23] Sen, A., Arithmetic of Quantum Entropy Function, JHEP, 08, 068 (2009) · doi:10.1088/1126-6708/2009/08/068
[24] Solodukhin, SN, The Conical singularity and quantum corrections to entropy of black hole, Phys. Rev. D, 51, 609 (1995) · doi:10.1103/PhysRevD.51.609
[25] Solodukhin, SN, On ‘Nongeometric’ contribution to the entropy of black hole due to quantum corrections, Phys. Rev. D, 51, 618 (1995) · doi:10.1103/PhysRevD.51.618
[26] Fursaev, DV, Temperature and entropy of a quantum black hole and conformal anomaly, Phys. Rev. D, 51, 5352 (1995) · doi:10.1103/PhysRevD.51.R5352
[27] Mavromatos, NE; Winstanley, E., Aspects of hairy black holes in spontaneously broken Einstein Yang-Mills systems: Stability analysis and entropy considerations, Phys. Rev. D, 53, 3190 (1996) · doi:10.1103/PhysRevD.53.3190
[28] Mann, RB; Solodukhin, SN, Conical geometry and quantum entropy of a charged Kerr black hole, Phys. Rev. D, 54, 3932 (1996) · doi:10.1103/PhysRevD.54.3932
[29] Mann, RB; Solodukhin, SN, Universality of quantum entropy for extreme black holes, Nucl. Phys. B, 523, 293 (1998) · Zbl 0953.83015 · doi:10.1016/S0550-3213(98)00094-7
[30] R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy, Phys. Rev. Lett.84 (2000) 5255 [gr-qc/0002040] [INSPIRE].
[31] S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav.17 (2000) 4175 [gr-qc/0005017] [INSPIRE]. · Zbl 0970.83026
[32] T.R. Govindarajan, R.K. Kaul and V. Suneeta, Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole, Class. Quant. Grav.18 (2001) 2877 [gr-qc/0104010] [INSPIRE]. · Zbl 0999.83031
[33] Gupta, KS; Sen, S., Further evidence for the conformal structure of a Schwarzschild black hole in an algebraic approach, Phys. Lett. B, 526, 121 (2002) · Zbl 0981.83030 · doi:10.1016/S0370-2693(01)01501-5
[34] A.J.M. Medved, A Comment on black hole entropy or does nature abhor a logarithm?, Class. Quant. Grav.22 (2005) 133 [gr-qc/0406044] [INSPIRE]. · Zbl 1060.83522
[35] Page, DN, Hawking radiation and black hole thermodynamics, New J. Phys., 7, 203 (2005) · doi:10.1088/1367-2630/7/1/203
[36] Banerjee, R.; Majhi, BR, Quantum Tunneling Beyond Semiclassical Approximation, JHEP, 06, 095 (2008) · doi:10.1088/1126-6708/2008/06/095
[37] Banerjee, R.; Majhi, BR, Quantum Tunneling, Trace Anomaly and Effective Metric, Phys. Lett. B, 674, 218 (2009) · doi:10.1016/j.physletb.2009.03.019
[38] Majhi, BR, Fermion Tunneling Beyond Semiclassical Approximation, Phys. Rev. D, 79, 044005 (2009) · doi:10.1103/PhysRevD.79.044005
[39] Cai, R-G; Cao, L-M; Ohta, N., Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy, JHEP, 04, 082 (2010) · Zbl 1272.83042 · doi:10.1007/JHEP04(2010)082
[40] Aros, R.; Diaz, DE; Montecinos, A., Logarithmic correction to BH entropy as Noether charge, JHEP, 07, 012 (2010) · Zbl 1290.83031 · doi:10.1007/JHEP07(2010)012
[41] Solodukhin, SN, Entanglement entropy of round spheres, Phys. Lett. B, 693, 605 (2010) · doi:10.1016/j.physletb.2010.09.018
[42] Dabholkar, A.; Gomes, J.; Murthy, S., Quantum black holes, localization and the topological string, JHEP, 06, 019 (2011) · Zbl 1298.81261 · doi:10.1007/JHEP06(2011)019
[43] Dabholkar, A.; Gomes, J.; Murthy, S., Localization & Exact Holography, JHEP, 04, 062 (2013) · Zbl 1342.81415 · doi:10.1007/JHEP04(2013)062
[44] Gupta, RK; Murthy, S., All solutions of the localization equations for N = 2 quantum black hole entropy, JHEP, 02, 141 (2013) · Zbl 1342.83027 · doi:10.1007/JHEP02(2013)141
[45] Dabholkar, A.; Gomes, J.; Murthy, S., Nonperturbative black hole entropy and Kloosterman sums, JHEP, 03, 074 (2015) · Zbl 1388.83421 · doi:10.1007/JHEP03(2015)074
[46] Murthy, S.; Reys, V., Functional determinants, index theorems, and exact quantum black hole entropy, JHEP, 12, 028 (2015) · Zbl 1388.83487
[47] Gupta, RK; Ito, Y.; Jeon, I., Supersymmetric Localization for BPS Black Hole Entropy: 1-loop Partition Function from Vector Multiplets, JHEP, 11, 197 (2015) · Zbl 1388.83453 · doi:10.1007/JHEP11(2015)197
[48] Murthy, S.; Reys, V., Single-centered black hole microstate degeneracies from instantons in supergravity, JHEP, 04, 052 (2016) · Zbl 1388.83488
[49] DeWitt, BS, Dynamical theory of groups and fields (1965), New York, U.S.A.: Gordon and Breach, New York, U.S.A. · Zbl 0169.57101
[50] B.S. DeWitt, Quantum Theory of Gravity. 1. The Canonical Theory, Phys. Rev.160 (1967) 1113 [INSPIRE]. · Zbl 0158.46504
[51] B.S. DeWitt, Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, Phys. Rev.162 (1967) 1195 [INSPIRE]. · Zbl 0161.46501
[52] B.S. DeWitt, Quantum Theory of Gravity. 3. Applications of the Covariant Theory, Phys. Rev.162 (1967) 1239 [INSPIRE]. · Zbl 0161.46501
[53] Seeley, RT, Singular integrals and boundary value problems, Amer. J. Math., 88, 781 (1966) · Zbl 0178.17601 · doi:10.2307/2373078
[54] Seeley, R., The resolvent of an elliptic boundary value problem, Amer. J. Math., 91, 889 (1969) · Zbl 0191.11801 · doi:10.2307/2373309
[55] Vassilevich, DV, Heat kernel expansion: User’s manual, Phys. Rept., 388, 279 (2003) · Zbl 1042.81093 · doi:10.1016/j.physrep.2003.09.002
[56] Denef, F.; Hartnoll, SA; Sachdev, S., Black hole determinants and quasinormal modes, Class. Quant. Grav., 27, 125001 (2010) · Zbl 1190.83040 · doi:10.1088/0264-9381/27/12/125001
[57] David, JR; Gaberdiel, MR; Gopakumar, R., The Heat Kernel on AdS_3and its Applications, JHEP, 04, 125 (2010) · Zbl 1272.83081 · doi:10.1007/JHEP04(2010)125
[58] Gopakumar, R.; Gupta, RK; Lal, S., The Heat Kernel on AdS, JHEP, 11, 010 (2011) · Zbl 1306.81155 · doi:10.1007/JHEP11(2011)010
[59] Lovrekovic, I., One loop partition function of six dimensional conformal gravity using heat kernel on AdS, JHEP, 10, 064 (2016) · Zbl 1390.83066 · doi:10.1007/JHEP10(2016)064
[60] Mandal, I.; Sen, A., Black Hole Microstate Counting and its Macroscopic Counterpart, Class. Quant. Grav., 27, 214003 (2010) · Zbl 1204.83004 · doi:10.1088/0264-9381/27/21/214003
[61] Sen, A., Microscopic and Macroscopic Entropy of Extremal Black Holes in String Theory, Gen. Rel. Grav., 46, 1711 (2014) · Zbl 1291.83015 · doi:10.1007/s10714-014-1711-5
[62] M. Gra na, Flux compactifications in string theory: A Comprehensive review, Phys. Rept.423 (2006) 91 [hep-th/0509003] [INSPIRE].
[63] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012) [DOI]. · Zbl 1245.83001
[64] Adamo, T.; Newman, ET, The Kerr-Newman metric: A Review, Scholarpedia, 9, 31791 (2014) · doi:10.4249/scholarpedia.31791
[65] Gibbons, GW; Hawking, SW, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D, 15, 2752 (1977) · doi:10.1103/PhysRevD.15.2752
[66] Hawking, SW, Quantum Gravity and Path Integrals, Phys. Rev. D, 18, 1747 (1978) · doi:10.1103/PhysRevD.18.1747
[67] Hawking, SW, Zeta Function Regularization of Path Integrals in Curved Space-Time, Commun. Math. Phys., 55, 133 (1977) · Zbl 0407.58024 · doi:10.1007/BF01626516
[68] Denardo, G.; Spallucci, E., Induced Quantum Gravity From Heat Kernel Expansion, Nuovo Cim. A, 69, 151 (1982) · doi:10.1007/BF02902652
[69] I.G. Avramidi, The Heat kernel approach for calculating the effective action in quantum field theory and quantum gravity, hep-th/9509077 [INSPIRE]. · Zbl 0866.58071
[70] De Berredo-Peixoto, G., A Note on the heat kernel method applied to fermions, Mod. Phys. Lett. A, 16, 2463 (2001) · Zbl 1138.81469 · doi:10.1142/S0217732301005965
[71] Schwinger, JS, On gauge invariance and vacuum polarization, Phys. Rev., 82, 664 (1951) · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[72] DeWitt, BS, Quantum Field Theory in Curved Space-Time, Phys. Rept., 19, 295 (1975) · doi:10.1016/0370-1573(75)90051-4
[73] Karan, S.; Kumar, S.; Panda, B., General heat kernel coefficients for massless free spin-3/2 Rarita-Schwinger field, Int. J. Mod. Phys. A, 33, 1850063 (2018) · Zbl 1387.81260 · doi:10.1142/S0217751X1850063X
[74] R.C. Henry, Kretschmann scalar for a Kerr-Newman black hole, Astrophys. J.535 (2000) 350 [astro-ph/9912320] [INSPIRE].
[75] C. Cherubini, D. Bini, S. Capozziello and R. Ruffini, Second order scalar invariants of the Riemann tensor: Applications to black hole space-times, Int. J. Mod. Phys. D11 (2002) 827 [gr-qc/0302095] [INSPIRE]. · Zbl 1070.83524
[76] Bekenstein, JD, Bekenstein-Hawking entropy, Scholarpedia, 3, 7375 (2008) · doi:10.4249/scholarpedia.7375
[77] Andrianopoli, L.; D’Auria, R.; Ferrara, S.; Trigiante, M., Black-hole attractors in N = 1 supergravity, JHEP, 07, 019 (2007) · doi:10.1088/1126-6708/2007/07/019
[78] Andrianopoli, L.; D’Auria, R.; Ferrara, S., Consistent reduction of N = 2 → N = 1 four-dimensional supergravity coupled to matter, Nucl. Phys. B, 628, 387 (2002) · Zbl 0992.83086 · doi:10.1016/S0550-3213(02)00090-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.