×

Tree-grass interaction dynamics and pulsed fires: mathematical and numerical studies. (English) Zbl 1465.92141

Summary: Savannas are dynamical systems where grasses and trees can either dominate or coexist. Fires are known to be central in the functioning of the savanna biome although their characteristics are expected to vary along the rainfall gradients as observed in Sub-Saharan Africa. In this paper, we model the tree-grass dynamics using impulsive differential equations that consider fires as discrete events. This framework allows us to carry out a comprehensive qualitative mathematical analysis that revealed more diverse possible outcomes than the analogous continuous model. We investigated local and global properties of the equilibria and we showed that various states exist for the physiognomy of vegetation. Though several shifts between vegetation states appeared to be determined by fire periodicity, we showed that direct shading of grasses by trees is also an influential process embodied in the model by a competition parameter leading to bifurcations. Relying on a suitable nonstandard simulation scheme, we carried out numerical simulations in reference to three main climatic zones as observable in Central Africa.

MSC:

92D40 Ecology
65L12 Finite difference and finite volume methods for ordinary differential equations
34A37 Ordinary differential equations with impulses
34D23 Global stability of solutions to ordinary differential equations

References:

[1] Menaut, J., The vegetation of African savanahs, (Bourlière, F., Tropical Savannas (1983), Elsevier, Amsterdam), 109-149
[2] Frost, P. G.H.; Medina, E.; Menaut, J. C.; Solbrig, O.; Swift, M.; Walker, B. H., Responses of savannas to stress and disturbance, Biol Int Special, 10, 1-82 (1986)
[3] Walter, H.; Mueller-Dombois, D., Ecology of Tropical and Subtropical Vegetation (1971), Oliver & Boyd, Edinburgh, UK
[4] Walker, B.; Noy-Meir, I., Aspects of the stability and resilience of savanna ecosystems, (Huntley, Brian J.; Walker, Brian H., Ecology of Tropical Savannas (1982), Springer), 556-590
[5] Hochberg, M.; Menaut, J.; Gignoux, J., The influences of tree biology and fire in the spatial structure of the West African savannah, J. Ecol., 82, 2, 217-226 (1994)
[6] Higgins, S.; Bond, W.; Trollope, W., Fire, resprouting and variability: A recipe for grass-tree coexistence in savanna, J. Ecol., 88, 2, 213-229 (2000)
[7] Lacey, C.; Walker, J.; Noble, I., Fire in Australian tropical savannas, Ecology of tropical savannas, 246-272 (1982), Springer
[8] Stronach, N.; McNaughton, S., Grassland fire dynamics in the serengeti ecosystem, and a potential method of retrospectively estimating fire energy, J. Appl. Ecol., 26, 3, 1025-1033 (1989)
[9] Menaut, J.; Abbadie, L.; Lavenu, F.; Loudjani, P.; Podaire, A., Biomass burning in west african savannas, (Levine, J. S., Global Biomass Burning (1991), Massachusetts Institute of Technology Press, Cambridge), 133-142
[10] Mordelet, P., Influence des Arbres Sur la Strate Herbacée d’une Savane Humide(Lamto, Côte d’Ivoire) (1993), (Ph.D. thesis)
[11] Frost, P. G.H.; Robertson, F., The ecological effects of fire in savannas, (Walker, B. H., Determinants of Tropical Savannas (1987), International Council of Scientific Unions: International Council of Scientific Unions Miami), 93-140
[12] Bond, W.; Midgley, J. J., Ecology of sprouting in woody plants: The persistence niche, Trend Ecol. Evol., 16, 1, 45-51 (2001)
[13] Menaut, J.; Cesar, J., Structure and primary productivty of lamto savannas, ivory coast, Ecology, 60, 6, 1197-1210 (1979)
[14] Gillon, D., The fire problem in tropical savannas, (Bourlière, F., Tropical Savannas (1983), Ecosystems of the World, Elsevier, Amsterdam), 617-641
[15] Abbadie, L.; Gignoux, J.; Roux, X.; Lepage, M., Lamto: Structure, Functioning, and Dynamics of a Savanna Ecosystem, vol. 179 (2006), Springer
[16] Janowiak, J., An investigation of interannual rainfall variability in Africa, J. Climate, 1, 3, 240-255 (1988)
[17] Schwinning, S.; Sala, O.; Loik, M.; Ehleringer, J., Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems, Oecologia, 141, 2, 191-193 (2004)
[18] Goldberg, D.; Novoplansky, A., On the relative importance of competition in unproductive environments, J. Ecol., 85, 4, 409-418 (1997)
[19] Noy-Meir, I., Desert ecosystems: Environment and producers, Ann. Rev. Ecol. Syst., 4, 25-51 (1973)
[20] Scheiter, S., Grass-Tree Interactions and the Ecology of African Savannas under Current and Future Climates (2009), (Ph.D. thesis)
[21] Tilman, D., Competition and biodiversity in spatially structured habitats, Ecology, 75, 1, 2-16 (1994)
[22] Higgins, S.; Bond, W.; Trollope, W.; Williams, R., Physically motivated empirical models for the spread and intensity of grass fires, Int. J. Wildland Fire, 17, 5, 595-601 (2008)
[23] Sankaran, M.; Ratnam, J.; Hanan, N., Tree-grass coexistence in savannas revisited-insights from an examination of assumptions and mechanisms invoked in existing models, Ecol. Lett., 7, 6, 480-490 (2004)
[24] Sankaran, M.; Hanan, N.; Scholes, R.; Ratnam, J.; Augustine, D.; Cade, B.; Gignoux, J.; Higgins, S.; Le Roux, X.; Ludwig, F., Determinants of woody cover in African savannas, Nature, 438, 7069, 846-849 (2005)
[25] D’Odorico, P.; Laio, F.; Ridolfi, L., A probabilistic analysis of fire-induced tree-grass coexistence in savannas, Am. Nat., 167, 3, E79-E87 (2006)
[26] Accatino, F.; De Michele, C.; Vezzoli, R.; Donzelli, D.; Scholes, R. J., Tree-grass co-existence in savanna: Interactions of rain and fire, J. Theor. Biol., 267, 2, 235-242 (2010) · Zbl 1410.92150
[27] Beckage, B.; Gross, L.; Platt, W. J., Grass feedbacks on fire stabilize savannas, Ecol. Model., 222, 14, 2227-2233 (2011)
[28] Staver, A.; Archibald, S.; Levin, S., Tree cover in sub-saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states, Ecology, 92, 5, 1063-1072 (2011)
[29] Yatat, V.; Dumont, Y.; Tewa, J. J.; Couteron, P.; Bowong, S., Mathematical analysis of a size structured tree-grass competition model for savanna ecosystems, Biomath, 3, 1 (2014), Article Id. 1404212 · Zbl 1368.92205
[30] Tchuinté Tamen, A.; Tewa, J. J.; Couteron, P.; Bowong, S.; Dumont, Y., A generic modeling of fire impact in a tree-grass savanna model, Biomath, 3, 2 (2014), Article Id. 1407191 · Zbl 1331.92157
[31] Anguelov, R.; Dumont, Y.; Lubuma, J. M.-S., On nonstandard finite difference schemes in biosciences, AIP Conf. Proc., 1487, 1, 212-223 (2012)
[32] Anguelov, R.; Dumont, Y.; Lubuma, J.; Mureithi, E., Stability analysis and dynamics preserving nonstandard finite difference schemes for a malaria model, Math. Popul. Stud., 20, 2, 101-122 (2013) · Zbl 1409.92221
[33] Anguelov, R.; Dumont, Y.; Lubuma, J.-S.; Shillor, M., Dynamically consistent nonstandard finite difference schemes for epidemiological models, J. Comput. Appl. Math., 255, 161-182 (2014) · Zbl 1291.92097
[34] Scholes, R.; Walker, B., An African Savanna: Synthesis of the Nylsvley Study (1993), Cambridge University Press
[35] Thonicke, K.; Venevsky, S.; Sitch, S.; Cramer, W., The role of fire disturbance for global vegetation dynamics: Coupling fire into a dynamic global vegetation model, Global Ecol. Biogeog., 10, 6, 661-677 (2001)
[36] Bainov, D.; Simeonov, P., Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66 (1993), CRC Press · Zbl 0815.34001
[37] Baek, H., Dynamic complexities of a three-species beddington-deangelis system with impulsive control strategy, Acta Appl. Math., 110(1),, 23-38. (2010) · Zbl 1194.34087
[38] Bunimovich-Mendrazitsky, S.; Byrne, H.; Stone, L., Mathematical model of pulsed immunotherapy for superficial bladder cancer, Bull. Math. Biol., 70, 7, 2055-2076 (2008) · Zbl 1147.92013
[39] Ahmad, S.; Stamova, I. M., Asymptotic stability of an n-dimensional impulsive competitive system, Nonlinear Anal.: Real World Appl., 8(2), 654-663 (2007) · Zbl 1152.34342
[40] Lakmeche, A.; Arino, O., Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dynam. Cont. Discr. Impul. Syst., 7, 2, 265-287 (2000) · Zbl 1011.34031
[41] He, M.; Chen, F., Dynamic behaviors of the impulsive periodic multi-species predator-prey system, Comput. Math. Appl., 57, 2, 248-265 (2009) · Zbl 1165.34308
[42] Wang, X.; Wang, W.; Lin, W., Dynamics of a periodic watt-type predator-prey system with impulsive effect, Chaos Solitons Fractals, 39, 3, 1270-1282 (2009) · Zbl 1197.34064
[43] Zhang, H.; Georgescu, P.; Chen, L., On the impulsive controllability and bifurcation of a predator-pest model of ipm, BioSystems, 93, 3, 151-171 (2008)
[45] Favier, C.; Aleman, J.; Bremond, L.; Dubois, M.; Freycon, V.; Yangakola, J.-M., Abrupt shifts in african savanna tree cover along a climatic gradient, Global Ecol. Biogeog., 21, 8, 787-797 (2012)
[46] Letouzey, R.; Combroux, J., Cameroun, phytogeographie, Atlas du Cameroun, planche VII (1959), Société Nouvelle de Cartographie, Paris
[47] Letouzey, R., Notices et carte phytogéographique du Cameroun au 1/500 000, IRA/Institut de la carte Internationale de la Végétation, Toulouse, Fasc. 1-5, 240 (1985)
[48] Penning de Vries, F. W.T.; Djitèye, M. A., La productivité des pâturages sahéliens: une etude des sols, des végétations et de l’exploitation de cette ressource naturelle, Agric. Res. Rep 918 (1982), Pudoc, Wageningen
[49] Tucker, C.; Vanpraet, C. L.; Sharman, M.; Van Ittersum, G., Satellite remote sensing of total herbaceous biomass production in the senegalese sahel: 1980-1984, Remote Sens. Environ., 17, 3, 233-249 (1985)
[50] Van Langevelde, F.; Van De Vijver, C.; Kumar, L.; Van De Koppel, J.; De Ridder, N.; Van Andel, J.; Skidmore, A.; Hearne, J.; Stroosnijder, L.; Bond, W., Effects of fire and herbivory on the stability of savanna ecosystems, Ecology, 84, 2, 337-350 (2003)
[51] Mermoz, S.; Le Toan, T.; Villard, L.; Réjou-Méchain, M.; Seifert-Granzin, J., Biomass assessment in the Cameroon savanna using ALOS PALSAR data, Remote Sens. Environ., 155, 109-119 (2014)
[52] Breman, H.; Kessler, J.-J., Woody Plants in Agro-ecosystems of Semi-arid Regions: With an Emphasis on the Sahelian Countries. (1995), Springer Verlag
[53] Baudena, M.; Dekker, S. C.; van Bodegom, P. M.; Cuesta, B.; Higgins, S. I.; Lehsten, V.; Reick, C. H.; Rietkerk, M.; Scheiter, S.; Yin, Z.; Zavala, M. A.; Brovkin, V., Forests, savannas and grasslands: bridging the knowledge gap between ecology and dynamic global vegetation models, Biogeosci. Discuss., 11, 6, 9471-9510 (2014)
[54] Staver, A.; Levin, S., Integrating theoretical climate and fire effects on savanna and forest systems, Am. Nat., 180, 2, 211-224 (2012)
[55] Walker, B.; Ludwig, D.; Holling, C.; Peterman, R., Stability of semi-arid savanna grazing systems, J. Ecol., 69, 2, 473-498 (1981)
[56] Barbier, N.; Couteron, P.; Lefever, R.; Deblauwe, V.; Lejeune, O., Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns, Ecology, 89, 6, 1521-1531 (2008)
[57] De Michele, C.; Accatino, F., Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics, PLoS One, 9, 3, e91195 (2014)
[58] Jeffery, K. J.; Korte, L.; Palla, F.; Walters, G. M.; White, L.; Abernethy, K., Fire management in a changing landscape: a case study from Lopé National Park, Gabon, vol. 20.1 (2014), International Union for Conservation of Nature and Natural Resources
[60] Nie, L.; Teng, Z.; Hu, L.; Peng, J., Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects, Nonlinear Anal.: Real World Appl., 11, 3, 1364-1373 (2010) · Zbl 1228.37058
[61] Lakshmikantham, V.; Bainov, D.; Simeonov, P., Theory of Impulsive Differential Equations, vol. 6 (1989), World Scientific · Zbl 0719.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.