×

A forward equation for barrier options under the Brunick & Shreve Markovian projection. (English) Zbl 1465.91128

From the text: In this paper, we provided a new and numerically effective way to work with observed barrier option prices to determine the Brunick-Shreve Markovian projection of a stochastic variance of a semi-martingale \(S\) with running maximum \(M\) onto \((S_t, M_t)\). The present Dupire-type formula, which provides similar advantages (and disadvantages) as the standard Dupire approach for vanillas, was then re-arranged to obtain a forward PIDE, which is convenient to control the numerical stability of best fit algorithms [S. Crépey, “Tikhonov regularization”, in: Encyclopedia of quantitative finance. Chichester: Wiley. 1807–1812 (2010; doi:10.1002/9780470061602.eqf12016)]. There is a well-known literature on the calibration of vanilla options through Markovian projection for LSV models [J. Guyon and P. Henry-Labordere, “The smile calibration problem solved”, SSRN Preprint, 17 p. (2011; doi:10.2139/ssrn.1885032); Y. Ren et al., “Calibrating and pricing with embedded local volatility models”, Risk Mag. 20, No. 9, 138–143 (2007)]. We believe that extending these methods combined with the forward PIDE we presented in this paper will lead to novel calibration algorithms for barrier options.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65R99 Numerical methods for integral equations, integral transforms
91G20 Derivative securities (option pricing, hedging, etc.)

References:

[1] Achdou, Y. and Pironneau, O., Computational Methods for Option Pricing. Frontiers in applied mathematics, 2005 (Society for Industrial and Applied Mathematics: Philadelphia). · Zbl 1078.91008 · doi:10.1137/1.9780898717495
[2] Brunick, G., Uniqueness in law for a class of degenerate diffusions with continuous covariance. Probab. Theory Relat. Fields, 2011, 155, 265-302. · Zbl 1268.60084 · doi:10.1007/s00440-011-0398-8
[3] Brunick, G. and Shreve, S., Mimicking an Itô process by a solution of a stochastic differential equation. Ann. Appl. Probab., 2013, 23(4), 1584-1628. · Zbl 1284.60109 · doi:10.1214/12-AAP881
[4] Carmona, R. and Nadtochiy, S., Local volatility dynamic models. Finan. Stoch., 2009, 13(1), 1-48. · Zbl 1199.91202 · doi:10.1007/s00780-008-0078-4
[5] Carr, P. and Crosby, J., A class of Lévy process models with almost exact calibration to both barrier and vanilla FX options. Quant. Finance, 2010, 10(10), 1115-1136. · Zbl 1229.91300
[6] Carr, P. and Hirsa, A., Forward evolution equations for knock-out options. In Advances in Mathematical Finance. Applied and numerical harmonic analysis, edited by M.C. Fu, R.A. Jarrow, J.Y.J. Yen, and R.J. Elliott, pp. 195-217, 2007 (Birkhäuser: Boston). · Zbl 1157.91355 · doi:10.1007/978-0-8176-4545-8_11
[7] Cox, A.M.G. and Obłój, J., Robust pricing and hedging of double no-touch options. Finan. Stoch., 2011, 15(3), 573-605. · Zbl 1303.91171 · doi:10.1007/s00780-011-0154-z
[8] Crépey, S., Tikhonov regularization. In Encyclopedia of Quantitative Finance, edited by R. Cont, pp. 1807-1812, 2010 (Wiley-Blackwell). Available online at: http://dx.doi.org/10.1002/9780470061602.eqf12016. · doi:10.1002/9780470061602.eqf12016
[9] Derman, E., Kani, I. and Kamal, M., Trading and Hedging Local Volatility. Quantitative strategies research notes, 1996 (Goldman Sachs: New York).
[10] Dupire, B., A unified theory of volatility. In Derivatives Pricing: The Classic Collection edited by P. Carr, 2004 (Risk Books: London).
[11] Dupire, B., Functional Itô calculus. Bloomberg portfolio research paper 2009-04-FRONTIERS. Bloomberg, 2009. Available online at SSRN: http://ssrn.com/abstract=1435551. · Zbl 1420.91458
[12] Egger, H. and Engl, H.W., Tikhonov regularization applied to the inverse problem of option pricing: Convergence analysis and rates. Inverse Probl., 2005, 21(3), 1027-1045. · Zbl 1205.65194 · doi:10.1088/0266-5611/21/3/014
[13] Forde, M., On the Markovian projection in the Brunick-Shreve mimicking result. Stat. Probab. Lett., 2013, 85, 98-105. · Zbl 1290.60077 · doi:10.1016/j.spl.2013.11.005
[14] Forde, M., Pogudin, A. and Zhang, H., Hitting times, occupation times, tri-variate laws and the forward Kolmogorov equation for one-dimensional diffusion with memory. Adv. Appl. Probab., 2013, 45(3), 595-893. · Zbl 1287.60095 · doi:10.1017/S0001867800006613
[15] Gatheral, J., The Volatility Surface: A Practitioner’s Guide, 2006 (John Wiley & Sons: Hoboken, NJ).
[16] Guyon, J., Path-dependent volatility. Risk Mag., 2014, 27(9). doi: 10.2139/ssrn.2425048 · doi:10.2139/ssrn.2425048
[17] Guyon, J. and Henry-Labordere, P., The smile calibration problem solved. Société Générale, 2011 (Social Science Electronic Publishing). SSRN: 1885032. Available online at: http://dx.doi.org/10.2139/ssrn.1885032.
[18] Gyöngy, I., Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Relat. Fields, 1986, 71(4), 501-516. · Zbl 0579.60043 · doi:10.1007/BF00699039
[19] Pironneau, O., Dupire-like identities for complex options. Comptes Rendus Mathematique, 2007, I(344), 127-133. · Zbl 1371.91182 · doi:10.1016/j.crma.2006.11.032
[20] Ren, Y., Madan, D. and Qian, M.Q., Calibrating and pricing with embedded local volatility models. Risk Mag., 2007, 20(9), 138-143.
[21] Shreve, S.E., Stochastic Calculus for Finance II: Continuous-time Models. Springer finance, 2004 (Springer-Verlag: New York). · Zbl 1068.91041 · doi:10.1007/978-1-4757-4296-1
[22] White, R., Numerical solution to PDEs with financial applications. OpenGamma Quant. Res., 2013. Available online at: http://developers.opengamma.com/quantitative-research/Numerical-Solutions-to-PDEs-with-Financial-Applications-OpenGamma.pdf
[23] Windcliff, H., Forsyth, P.A. and Vetzal, K.R., Analysis of the stability of the linear boundary condition for the Black-Scholes equation. J. Comput. Fin., 2004, 8, 65-92.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.