×

Membership criteria and containments of powers of monomial ideals. (English) Zbl 1464.13024

Acta Math. Vietnam. 44, No. 1, 117-139 (2019); correction ibid. 46, No. 4, 873-874 (2021).
The difference between an ordinary and symbolic power of a homogeneous ideal in a polynomial ring is an important and challenging problem underlying many projects in commutative algebra and algebraic geometry. When restricting to monomial ideals, insight has been gained by exploiting techniques from combinatorics and graph theory. Recall that, by J. Herzog et al. [Adv. Math. 210, No. 1, 304–322 (2007; Zbl 1112.13006)], if \(I\) is a monomial ideal in \(R = K[x_1, \ldots, x_n]\) with \(K\) a field, then the \(k\)th symbolic power of \(I\) is \[I^{(k)} = \bigcap_{P \in \mathrm{Min}(I)} I^k_P.\] Also, we let \(\overline{I^k}\) denote the integral closure of the ordinary power \(I^k\).
In this paper, the authors use combinatorial optimization to connect ordinary powers of \(I\), symbolic powers of \(I\), and integral closures of \(I\) with certain matching numbers, covering numbers and their fractional versions. Four optimal values of programming problems are considered as follows. Let \(x^{\mathbf{a_1}}, \ldots, x^{\mathbf{a_m}}\) be the minimal monomial generators of \(I\) and \(M\) be the matrix whose \(i\)th column is \(\mathbf{a_i}\) be the “exponent matrix” of \(I\). We have \begin{align*} \nu_{\mathbf a}(I) & = \nu_{\mathbf a}(M) = \max \{ \mathbf{1}^m \cdot \mathbf{ y} \mid \mathbf{y} \in \mathbb N^m, M \cdot\mathbf{y} \leq \mathbf{ a} \} \\ \nu_{\mathbf a}^*(I) & = \nu_{\mathbf a}^*(M) = \max \{\mathbf{1}^m \cdot \mathbf{y} \mid \mathbf{y} \in \mathbb R_{\geq 0}^m, M \cdot \mathbf{y} \leq\mathbf{a} \} \\ \tau_{\mathbf a}(I) & = \tau_{\mathbf a}(M) = \min \{\mathbf{a} \cdot\mathbf{z} \mid\mathbf{ z} \in \mathbb N^n, M^T \cdot\mathbf{z} \geq\mathbf{1}^m \} \\ \tau_{\mathbf a}^*(I) & = \tau_{\mathbf a}^*(M) = \min \{\mathbf{a} \cdot \mathbf{z} \mid\mathbf{z} \in \mathbb R_{\geq 0}^n, M^T \cdot\mathbf{z} \geq\mathbf{1}^m \}. \end{align*}
The authors show that these optimal values can be used to gain information about \(I^k, \overline{I^k}\), and \(I^{(k)}\). Much of the work relies on the following proposition:
Proposition 1. Let \(I \subseteq R\) be a monomial ideal. Then
1.
\(x^{\mathbf a} \in I^k\) if and only if \(\nu_{\mathbf a}(I) \geq k\)
2.
\(x^{\mathbf a} \in \overline{I^k}\) if and only if \(\nu^*_{\mathbf a}(I) \geq k\)
3.
If \(I\) is square-free, then \(x^{\mathbf a} \in I^{(k)}\) if and only if \(\tau_{\mathbf a}(I) \geq k\).

In the special case that \(I\) is a square-free monomial ideal, the above optimal values are equal to well-known invariants from graph theory. In this case, \(I\) is naturally the edge ideal of a hypergraph \(\mathcal H\). The authors relate the optimal values via the following proposition:
Proposition. If \(I\) is a square-free monomial ideal, and hence an edge ideal of a hypergraph \(\mathcal H\), then \begin{align*} \nu_{\mathbf a}(I) & = \text{matching number of \(\mathcal H^{\mathbf a}\)} \\ \nu^*_{\mathbf a}(I) & = \text{fractional matching number of \(\mathcal H^{\mathbf a}\)} \\ \tau_{\mathbf a}(I) & = \text{covering number of \(\mathcal H^{\mathbf a}\)} \\ \tau^*_{\mathbf a}(I) & = \text{fractional covering of \(\mathcal H^{\mathbf a}\)} \end{align*} where \(\mathcal H^{\mathbf a}\) is a hypergraph which is a parallelization of \(\mathcal H\).
It is known that \[\nu_{\mathbf a}(I) \leq \nu_{\mathbf a}^*(I) = \tau_{\mathbf a}^*(I) \leq \tau_{\mathbf a}(I).\] The “gaps” between these invariants are well-understood. The authors apply known estimates of these gaps to Proposition 1 to obtain new containments between ordinary, symbolic, and integral powers as follows:
Theorem. Let \(I\) be a square-free monomial ideal and \(r\) be the maximum degree of the minimal generators of \(I\). For any \(k \geq 1\) we have
1.
\(\overline{I^{(r-1)(k-1)}+\lceil \frac{k}{r} \rceil} \subseteq I^k\);
2.
\(I^{(\lceil(1+\frac{1}{2} + \cdots + \frac{1}{r})k\rceil)} \subseteq \overline{I^k}\);
3.
\(I^{(rk-r+1)} \subseteq I^k\).

Approaching the relationship between combinatorial optimization and containments between various powers of ideals through a different lens, the authors use known membership criteria between \(I^k, I^{(k)}\) and \(\overline{I^k}\) for a monomial ideal \(I\) to obtain information about the gaps between the optimal values \(\nu_{\mathbf a}(I), \nu_{\mathbf a}^*(I), \tau_{\mathbf a}(I), \tau_{\mathbf a}^*(I)\).
Theorem. If \(M\) is an \(n \times m\) matrix of non-negative integers, then for all \(\mathbf{a} \in \mathbb N^n\) we have \[\nu_{\mathbf a}^*(M) < \nu_{\mathbf a}(M) + \min\{m,n\}.\]
Theorem. Let \(M\) be the incidence matrix of a simple hypergraph \(\mathcal H\). Let \(h\) be the maximal size of a minimal cover of \(\mathcal H\). Then for all \(\mathbf{a} \in \mathbb N^n\), \[\tau_{\mathbf a}(M) \leq h \nu_{\mathbf a}(M).\]
The paper contains further connections between algebra and combinatorics by considering properties of hypergraphs such as Mengerian and Fulkersionian. In particular, the authors demonstrate that their approaches give immediate proofs of previously known equalities [I. Gitler et al., Beitr. Algebra Geom. 48, No. 1, 141–150 (2007; Zbl 1114.13007); J. Herzog et al., Trans. Am. Math. Soc. 360, No. 12, 6231–6249 (2008; Zbl 1155.13003); Ngo Viet Trung, Vietnam J. Math. 34, No. 4, 489–494 (2006; Zbl 1112.13011)] for powers of edge ideals of hypergraphs in these cases.
Finally, the paper closes with a translation of the Conforti-Cornuéjols Conjecture that a hypergraph with packing property is Mengerian via the following conjecture from [N. V. Trung, “Square-free monomial ideals and hypergraphs”, in: Notes for the Workshop on Integral Closure, Multiplier Ideals and Cores. AIM (2006), https://www.aimath.org/WWN/integralclosure/Trung.pdf].
Conjecture. Let \(I\) be a square-free monomial ideal. Let mon-grade\((I)\) denote the maximal length of a regular sequence of monomials in \(I\), If \[\operatorname{mon-grade}(J) = \operatorname{ht}(J)\] for all monomial ideals \(J\) obtained from \(I\) by setting some variables equal to 0, 1, then \(I\) is a normal ideal.

MSC:

13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
05C65 Hypergraphs
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
13C05 Structure, classification theorems for modules and ideals in commutative rings
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)
90C27 Combinatorial optimization

References:

[1] Asgharzadeh, M.: Huneke’s degree-computing problem. arXiv:1609.04323.v2 (2017)
[2] Bauer, T., Di Rocco, S., Harbourne, B., Kapustka, M.L., Knutsen, A., Syzdek, W., Szemberg, T.: A primer on Seshadri constants. Contemp. Math. 496, 33-70 (2009) · Zbl 1184.14008 · doi:10.1090/conm/496/09718
[3] Baum, S., Trotter, L.E.: Integer rounding for polymatroid and branching optimization problems. SIAM J. Algebraic Discrete Method 2, 416-425 (1981) · Zbl 0518.90058 · doi:10.1137/0602044
[4] Baum, S., Trotter, L.E.: Finite checkability for integer rounding properties in combinatorial programming problems. Math. Programming 22, 141-147 (1982) · Zbl 0473.90059 · doi:10.1007/BF01581034
[5] Bocci, C., Cooper, S., Guardo, E., Harbourne, B., Janssen, M., Nagel, U., Seceleanu, A., Van Tuyl, A., Vu, T.: The Waldschmidt constant for squarefree monomial ideals. J. Algebraic Combin. 44(4), 875-904 (2016) · Zbl 1352.13012 · doi:10.1007/s10801-016-0693-7
[6] Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19, 399-417 (2010) · Zbl 1198.14001 · doi:10.1090/S1056-3911-09-00530-X
[7] Conforti, M., Cornuéjols, G.: Clutters that pack and the max flow min cut property: a conjecture, Management Science Research Report. http://handle.dtic.mil/100.2/ADA277340 (1993)
[8] Cooper, S., Embree, R.J.D., Hà, H.T., Hoefel, A.H.: Symbolic powers of monomial ideals. Proc. Edinb. Math. Soc. (2) 60(1), 39-55 (2017) · Zbl 1376.13010 · doi:10.1017/S0013091516000110
[9] Dao, H., De Stefani, A., Grifo, E., Huneke, C., Núñez-Betancourt, L.: Symbolic Powers of Ideals. In: Singularities and Foliations, Geometry, Topology and Applications, 387-432, Springer Proc. Math. Stat. 222 (2018) · Zbl 1404.13023
[10] Dipasquale, M., Francisco, C.A., Mermin, J., Schweig, J.: Asymptotic resurgence via integral closures. arXiv:1808.01547 (2018) · Zbl 1425.14007
[11] Duchet, P.: Hypergraphs. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics (1995) · Zbl 0859.05063
[12] Dupont, L.A., Villarreal, R.H.: Edge ideals of clique clutters of comparability graphs and the normality of monomial ideals. Math. Scand. 106, 88-98 (2010) · Zbl 1195.13008 · doi:10.7146/math.scand.a-15126
[13] Ein, L., Lazarsfeld, R., Smith, K.E.: Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144, 241-252 (2001) · Zbl 1076.13501 · doi:10.1007/s002220100121
[14] Francisco, C.A., Hà, H.T., Mermin, J.: Powers of Square-Free Monomial Ideals and Combinatorics. In: Commutative Algebra, pp 373-392. Springer (2013) · Zbl 1262.13036
[15] Füredi, Z.: Maximum degrees and fractional matchings in uniform hypergraphs. Combinatorica 1, 154-162 (1981) · Zbl 0494.05045
[16] Füredi, Z., Kahn, J., Seymour, P.D.: On the fractional matching polytope of a hypergraph. Combinatorica 13, 167-180 (1993) · Zbl 0779.05030 · doi:10.1007/BF01303202
[17] Gitler, I., Valencia, C.E., Villarreal, R.: A note on Rees algebras and the MFMC property. Contributions to Algebra and Geometry 48, 141-150 (2007) · Zbl 1114.13007
[18] Herzog, J., Hibi, T., Trung, N.V.: Symbolic powers of monomial ideals and vertex cover algebras. Adv. Math. 210(1), 304-322 (2007) · Zbl 1112.13006 · doi:10.1016/j.aim.2006.06.007
[19] Herzog, J., Hibi, T., Trung, N.V., Zheng, X.: Standard graded vertex cover algebras, cycles and leaves. Trans. Am. Math. Soc. 360, 6231-6249 (2008) · Zbl 1155.13003 · doi:10.1090/S0002-9947-08-04461-9
[20] Henderson, J.R.: Permutation decompositions of (0,1)-matrices and decomposition transversals. Thesis, Caltech (1971)
[21] Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147, 349-369 (2002) · Zbl 1061.13005 · doi:10.1007/s002220100176
[22] Huneke, C.: Uniform bounds in Noetherian rings. Invent. Math. 107(1), 203-223 (1992) · Zbl 0756.13001 · doi:10.1007/BF01231887
[23] Huneke, C.: Open problems on powers of ideals, Notes for the Workshop on Integral Closure, Multiplier Ideals and Cores, AIM. https://www.aimath.org/WWN/integralclosure/Huneke.pdf (2006)
[24] Lipman, J., Sathaye, A.: Jacobian ideals and a theorem of briançon-skoda. Michigan Math. J. 28, 199-222 (1981) · Zbl 0438.13019 · doi:10.1307/mmj/1029002510
[25] Lipman, J., Teissier, B.: Pseudorational local rings and a theorem of briançon-skoda about integral closures of ideals. Michigan Math. J. 28, 97-116 (1981) · Zbl 0464.13005 · doi:10.1307/mmj/1029002461
[26] Lovász, L.: On minimax theorems of combinatorics, PhD Thesis. Mathematikai Lapok 26, 209-264 (1975) · Zbl 0397.05040
[27] Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383-390 (1975) · Zbl 0323.05127 · doi:10.1016/0012-365X(75)90058-8
[28] Ma, L., Schwede, K.: Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers. arXiv:1705.02300 (2017) · Zbl 1436.13009
[29] Medina, R., Noyer, C., Raynaud, O.: Twins vertices in hypergraphs. Electron. Notes Discrete Math. 27, 87-89 (2006) · Zbl 1293.05248 · doi:10.1016/j.endm.2006.08.069
[30] Scheinerman, E.R., Ullman, D.H.: Fractional graph theory. A rational approach to the theory of graphs. With a foreword by Claude Berge. Reprint of the 1997 original. Dover Publications, Inc., Mineola, NY, 2011. xviii+ 211 pp. · Zbl 1254.05003
[31] Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 1. Springer, Berlin (2003) · Zbl 1041.90001
[32] Trung, N.V.: Integral closures of monomial ideals and Fulkersonian hypergraphs. Vietnam J. Math. 34, 489-494 (2006) · Zbl 1112.13011
[33] Trung, N.V.: Square-free monomial ideals and hypergraphs, Notes for the Workshop on Integral Closure, Multiplier Ideals and Cores, AIM. https://www.aimath.org/WWN/integralclosure/Trung.pdf (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.