×

Dense induced bipartite subgraphs in triangle-free graphs. (English) Zbl 1463.05313

Let \(b(G)\) denote the size of the largest bipartite subgraph of a graph \(G\) with \(n\) vertices and \(e\) edges. The extremal aspect of the Max Cut problem asks for lower bounds on \(b(G)\) in terms of \(n\) and \(e\). A classical result of P. Erdős [Isr. J. Math. 3, 113–116 (1965; Zbl 0134.43403)] states that \(b(G)\ge e/2\), and the complete graph on \(n\) vertices shows that the constant \(1/2\) in this bound is asymptotically tight. One class which has drawn most of the attention is \(H\)-free graphs, see P. Erdős [Problems and results in graph theory and combinatorial analysis. (English), Proc. 5th Br. comb. Conf., Aberdeen 1975, 169–192 (1976; Zbl 0335.05002)]. There are only a few graphs \(H\) for which optimal lower bounds on \(b(G)-e/2\), as \(G\) ranges over all \(H\)-free graph on \(e\) edges.
This paper is structured on six sections. In Section 1, some basic notations and results are presented, which are used in the rest of the paper. The induced bipartite subgraphs with many edges are presented in Section 2. Section 3 is devoted to prove the lower bounds for triangle-free graphs with minimum degree. In Section 4 the authors show the reduction from H-free graphs to triangle-free graphs. Section 5 is devoted to describe both probabilistic and explicit constructions of triangle-free graphs which have no high-degree bipartite induced subgraphs and in Section 6 there are presented the concluding remarks.

MSC:

05C42 Density (toughness, etc.)
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)

References:

[1] Alon, N., Explicit Ramsey graphs and orthonormal labelings, Elec. J. Combin., 1, R12 (1994) · Zbl 0814.05056 · doi:10.37236/1192
[2] Alon, N., Bipartite subgraphs, Combinatorica, 16, 3, 301-311 (1996) · Zbl 0860.05043 · doi:10.1007/BF01261315
[3] Alon, N.; Bollobás, B.; Krivelevich, M.; Südakov, B., Maximum cuts and judicious partitions in graphs without short cycles, J. Combin. Theory Ser. B, 88, 329-346 (2003) · Zbl 1030.05060 · doi:10.1016/S0095-8956(03)00036-4
[4] Alon, N.; Krivelevich, M.; Sudakov, B., Coloring graphs with sparse neighborhoods, J. Combin. Theory Ser. B, 77, 73-82 (1999) · Zbl 1026.05043 · doi:10.1006/jctb.1999.1910
[5] Alon, N.; Krivelevich, M.; Sudakov, B., MaxCut in H-free graphs, Comb. Prob. Comput., 14, 629-647 (2005) · Zbl 1081.05047 · doi:10.1017/S0963548305007017
[6] Bollobás, B.; Scott, A. D., Better bounds for max cut, Contemporary combinatorics, 185-246 (2002), Budapest: János Bolyai Math. Soc., Budapest · Zbl 1014.90082
[7] W. Cames van Batenburg, R. de Joannis de Verclos, R. J. Kang and F. Pirot: Bipartite induced density in triangle-free graphs, arXiv:1808.02512. · Zbl 1441.05119
[8] D. Conlon, J. Fox, M. Kwan and B. Sudakov: Hypergraph cuts above the average, Israel J. Math., to appear. · Zbl 1421.05075
[9] Erdős, P., On some extremal problems in graph theory, Israel J. Math., 3, 113-116 (1965) · Zbl 0134.43403 · doi:10.1007/BF02760037
[10] P. Erdős: Problems and results in graph theory and combinatorial analysis, (1976), 169-192. Congressus Numerantium, No. XV. · Zbl 0335.05002
[11] Edwards, C. S., Some extremal properties of bipartite subgraphs, Canad. J. Math., 3, 475-485 (1973) · Zbl 0254.05116 · doi:10.4153/CJM-1973-048-x
[12] Erdős, P.; Faudree, R.; Pach, J.; Spencer, J., How to make a graph bipartite, J. Combin. Theory Ser. B, 45, 86-98 (1988) · Zbl 0729.05025 · doi:10.1016/0095-8956(88)90057-3
[13] Erdős, P.; Simonovits, M., How many edges should be deleted to make a triangle-free graph bipartite?, Sets, graphs and numbers, 239-263 (1992), Amsterdam: North-Holland, Amsterdam · Zbl 0785.05052
[14] Erdős, P.; Janson, S.; Łuczak, T.; Spencer, J., A note on triangle-free graphs, 117-119 (1996), New York: Springer, New York · Zbl 0842.05080
[15] Erdős, P.; Simonovits, M., Some extremal problems in graph theory, 377-390 (1970), Amsterdam: North-Holland, Amsterdam · Zbl 0209.28001
[16] L. Esperet, R. J. Kang and S. Thomassé: Separation choosability and dense bipartite induced subgraphs, Comb. Prob. Comput., arXiv:1802.03727. · Zbl 1436.05036
[17] A. Frieze and M. Karoński: Introduction to random graphs, Cambridge University Press, 2016. · Zbl 1328.05002
[18] Gimbel, J.; Thomassen, C., Coloring triangle-free graphs with fixed size, Discrete Math., 219, 1-3, 275-277 (2000) · Zbl 0948.05027 · doi:10.1016/S0012-365X(00)00087-X
[19] H. Guo and L. Warnke: Packing nearly optimal Ramsey R(3, t) graphs, Combinatorica, accepted. · Zbl 1474.05275
[20] Harris, D. G., Some results on chromatic number as a function of triangle count, SIAM J. Discrete Math., 33, 546-563 (2019) · Zbl 1407.05093 · doi:10.1137/17M115918X
[21] Jiang, T.; Seiver, R., Turán numbers of subdivided graphs, SIAM J. Discrete Math., 26, 1238-1255 (2012) · Zbl 1256.05117 · doi:10.1137/100819254
[22] A. Johansson: Asymptotic choice number for triangle-free graphs, Technical Report 91-5, DIMACS, 1996.
[23] Krivelevich, M., Bounding Ramsey numbers through large deviation inequalities, Random Struct. Algor., 7, 145-155 (1995) · Zbl 0835.05047 · doi:10.1002/rsa.3240070204
[24] Krivelevich, M.; Sudakov, B., Pseudo-random graphs, 199-262 (2006), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1098.05075
[25] Molloy, M., The list chromatic number of graphs with small clique number, J. Combin. Theory Ser. B, 134, 264-184 (2019) · Zbl 1402.05076 · doi:10.1016/j.jctb.2018.06.007
[26] Nilli, A., Triangle-free graphs with large chromatic numbers, Discrete Math., 211, 261-262 (2000) · Zbl 0944.05032 · doi:10.1016/S0012-365X(99)00109-0
[27] Poljak, S.; Tuza, Z., Bipartite subgraphs of triangle-free graphs, SIAM J. Discrete Math., 7, 307-313 (1994) · Zbl 0806.68086 · doi:10.1137/S0895480191196824
[28] Sudakov, B., Making a K_4-free graph bipartite, Combinatorica, 27, 509-518 (2007) · Zbl 1164.05035 · doi:10.1007/s00493-007-2238-0
[29] Turán, P., On an external problem in graph theory, Mat. Fiz. Lapok, 48, 436-452 (1941) · Zbl 0026.26903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.