×

Quint points lattice in a driven Belousov-Zhabotinsky reaction model. (English) Zbl 1462.92060

Summary: We report the discovery of a regular lattice of exceptional quint points in a periodically driven oscillator, namely, in the frequency-amplitude control parameter space of a photochemically periodically perturbed ruthenium-catalyzed Belousov-Zhabotinsky reaction model. Quint points are singular boundary points where five distinct stable oscillatory phases coalesce. While spikes of the activator show a smooth and continuous variation, the spikes of the inhibitor show an intricate but regular branching into a myriad of stable phases that have fivefold contact points. Such boundary points form a wide parameter lattice as a function of the frequency and amplitude of light absorption. These findings revise current knowledge about the topology of the control parameter space of a celebrated prototypical example of an oscillating chemical reaction.
©2021 American Institute of Physics

MSC:

92E20 Classical flows, reactions, etc. in chemistry
34C60 Qualitative investigation and simulation of ordinary differential equation models
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Full Text: DOI

References:

[1] Forger, D. B., Biological Clocks, Rhythms, and Oscillations (2017), MIT Press: MIT Press, Cambridge · Zbl 1382.92002
[2] Argyris, J.; Faust, G.; Haase, M.; Friedrich, R., An Exploration of Dynamical Systems and Chaos (2015), Springer: Springer, Berlin · Zbl 1314.37003
[3] Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2015), Westview Press: Westview Press, Boulder · Zbl 1343.37001
[4] Epstein, I. R.; Pojman, J. A., An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (1998), Oxford University Press: Oxford University Press, Oxford
[5] Field, R. J.; Györgyi, L., Chaos in Chemistry and Biochemistry (1993), World Scientific: World Scientific, Singapore
[6] Zhabotinsky, A. M., Scholarpedia, 2, 9, 1435 (2007) · doi:10.4249/scholarpedia.1435
[7] Toth, R.; Taylor, A., The tris \((2,2{}^\prime \)-bipyridyl) ruthenium-catalyzed Belousov-Zhabotinsky reaction, Prog. React. Kinet. Mech., 31, 59-115 (2006) · doi:10.3184/007967406779946928
[8] Field, R. J.; Körös, E.; Noyes, R. M., Oscillations in chemical systems II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system, J. Am. Chem. Soc., 94, 8649-8664 (1972) · doi:10.1021/ja00780a001
[9] Taylor, A. F., The Belousov-Zhabotinsky reaction, Prog. React. Kinet. Mech., 27, 247-325 (2002) · doi:10.3184/007967402103165414
[10] Field, R. J.; Noyes, R. M., Oscillations in chemical systems IV. Limit cycle behavior in a model of a real chemical reaction, J. Chem. Phys., 60, 1877-1884 (1974) · doi:10.1063/1.1681288
[11] Tyson, J. J., “A quantitative account of oscillations, bistability, and traveling waves in the Belousov-Zhabotinsky reaction,” in Oscillations and Traveling Waves in Chemical Systems, edited by R. J. Field and M. Burger (Wiley-Interscience, New York, 1985).
[12] Tyson, J. J.; Fife, P. C., Target patterns in a realistic model of the Belousov-Zhabotinsky reaction, J. Chem. Phys., 73, 2224-2237 (1980) · doi:10.1063/1.440418
[13] Español, M. I.; Rotstein, H. G., Complex mixed-mode oscillatory patterns in a periodically forced excitable Belousov-Zhabotinsky reaction model, Chaos, 25, 064612 (2015) · doi:10.1063/1.4922715
[14] Pikovsky, A.; Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics (2016), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1419.37002
[15] Freire, J. G.; Gallas, J. A. C., Stern-Brocot trees in the periodicity of mixed-mode oscillations, Phys. Chem. Chem. Phys., 13, 12191-12198 (2011) · doi:10.1039/c0cp02776f
[16] Nascimento, M. A.; Gallas, J. A. C.; Varela, H., Self-organized distribution of periodicity and chaos in an electrochemical oscillator, Phys. Chem. Chem. Phys., 13, 441-446 (2011) · doi:10.1039/C0CP01038C
[17] Freire, J. G.; Pöschel, T.; Gallas, J. A. C., Stern-Brocot trees in spiking and bursting of sigmoidal maps, Europhys. Lett., 100, 48002 (2012) · doi:10.1209/0295-5075/100/48002
[18] Gallas, M. R.; Gallas, M. R.; Gallas, J. A. C., Distribution of chaos and periodic spikes in a three-cell population model of cancer, Eur. Phys. J. Spec. Top., 233, 2131-2144 (2014) · doi:10.1140/epjst/e2014-02254-3
[19] Gallas, J. A. C., Spiking systematics in some CO \({}_2\) laser models, Adv. At. Mol. Opt. Phys., 65, 127-191 (2016) · doi:10.1016/bs.aamop.2016.01.001
[20] Rao, X. B.; Chu, Y. D.; Xu, L.; Chang, Y. X.; Zhang, J. G., Fractal structures in centrifugal flywheel governor system, Commun. Nonlinear Sci. Numer. Simul., 50, 330-339 (2017) · Zbl 1446.70043 · doi:10.1016/j.cnsns.2017.03.016
[21] Xu, L.; Chu, Y. D.; Yang, Q., Novel dynamical scenario of the two-stage Colpitts oscillator, Chaos, Solitons Fractals, 138, 109998 (2020) · Zbl 1490.37110 · doi:10.1016/j.chaos.2020.109998
[22] Rao, X. B.; Zhao, X. P.; Gao, J. S.; Zhang, J. G., Self-organization with fast-slow time scale dynamics in a memristor-based Shinriki’s circuit, Commun. Nonlinear Sci. Numer. Simul., 94, 105569 (2021) · Zbl 1528.94124 · doi:10.1016/j.cnsns.2020.105569
[23] Gallas, J. A. C.; Hauser, M. J. B.; Olsen, L. F., Complexity of a peroxidase-oxidase reaction model, Phys. Chem. Chem. Phys., 23, 1943-1955 (2021) · doi:10.1039/D0CP06153K
[24] Gallas, J. A. C., Overlapping spikes cascades in a semiconductor laser proxy, Brazilian J. Phys. · doi:10.1007/s13538-021-00865-z
[25] Vélez, J. A.; Bragard, J.; Pérez, L. M.; Cabanas, A. M.; Suarez, O. J.; Laroze, D.; Mancini, H. L., Periodicity characterization of the nonlinear magnetization dynamics, Chaos, 30, 093112 (2020) · doi:10.1063/5.0006018
[26] Rodrigues, C. S.; dos Santos, C. G. P.; de Miranda, C. C.; Parma, E.; Varela, H.; Nagao, R., A numerical investigation of the effect of external resistence and applied potential on the distribution of periodicity and chaos in the anodic dissolution of nickel, Phys. Chem. Chem. Phys., 22, 21823-21834 (2020) · doi:10.1039/D0CP04238B
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.