×

Low-rank tensor completion via smooth matrix factorization. (English) Zbl 1462.90096

Summary: Low-rank modeling has achieved great success in tensor completion. However, the low-rank prior is not sufficient for the recovery of the underlying tensor, especially when the sampling rate (SR) is extremely low. Fortunately, many real world data exhibit the piecewise smoothness prior along both the spatial and the third modes (e.g., the temporal mode in video data and the spectral mode in hyperspectral data). Motivated by this observation, we propose a novel low-rank tensor completion model using smooth matrix factorization (SMF-LRTC), which exploits the piecewise smoothness prior along all modes of the underlying tensor by introducing smoothness constraints on the factor matrices. An efficient block successive upper-bound minimization (BSUM)-based algorithm is developed to solve the proposed model. The developed algorithm converges to the set of the coordinate-wise minimizers under some mild conditions. Extensive experimental results demonstrate the superiority of the proposed method over the compared ones.

MSC:

90C25 Convex programming
15A69 Multilinear algebra, tensor calculus
15A83 Matrix completion problems
Full Text: DOI

References:

[1] Varghees, V. N.; Manikandan, M. S.; Gini, R., Adaptive MRI image denoising using total-variation and local noise estimation, Proceedings of the International Conference on Advances in Engineering, Science and Management (ICAESM), 506-511 (2012)
[2] Ji, T.-Y.; Huang, T.-Z.; Zhao, X.-L.; Ma, T.-H.; Deng, L.-J., A non-convex tensor rank approximation for tensor completion, Appl. Math. Modell., 48, 410-422 (2017) · Zbl 1480.90259
[3] Li, F.; Ng, M. K.; Plemmons, R. J., Coupled segmentation and denoising/deblurring models for hyperspectral material identification, Numer. Linear Algebr. Appl., 19, 1, 153-173 (2012) · Zbl 1274.94005
[4] Zhao, X.-L.; Wang, F.; Huang, T.-Z.; Ng, M. K.; Plemmons, R. J., Deblurring and sparse unmixing for hyperspectral images, IEEE Trans. Geosci. Remote Sens., 51, 7, 4045-4058 (2013)
[5] Chang, Y.; Yan, L.; Zhong, S., Hyperspectral image denoising via spectral and spatial low-rank approximation, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4193-4196 (2017)
[6] Yang, J.-H.; Zhao, X.-L.; Mei, J.-J.; Wang, S.; Ma, T.-H.; Huang, T.-Z., Total variation and high-order total variation adaptive model for restoring blurred images with cauchy noise, Comput. Math. Appl., 77, 5, 1255-1272 (2019) · Zbl 1442.94015
[7] Zhuang, L.; Bioucas-Dias, J. M., Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 3, 730-742 (2018)
[8] Chen, Y.; Huang, T.-Z.; Zhao, X.-L.; Deng, L.-J., Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization, Appl. Math. Modell., 63, 128-147 (2018) · Zbl 1480.65101
[9] Zhang, H.; Patel, V. M., Convolutional sparse and low-rank coding-based rain streak removal, Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), 1259-1267 (2017)
[10] Jiang, T.-X.; Huang, T.-Z.; Zhao, X.-L.; Deng, L.-J.; Wang, Y., Fastderain: A novel video rain streak removal method using directional gradient priors, IEEE Trans. Image Process., 28, 4, 2089-2102 (2019)
[11] Zhao, Q.; Zhang, L.; Cichocki, A., Bayesian CP factorization of incomplete tensors with automatic rank determination, IEEE Trans. Pattern Anal. Mach. Intell., 37, 9, 1751-1763 (2015)
[12] Korah, T.; Rasmussen, C., Spatiotemporal inpainting for recovering texture maps of occluded building facades, IEEE Trans. Image Process., 16, 9, 2262-2271 (2007)
[13] Yokota, T.; Lee, N.; Cichocki, A., Robust multilinear tensor rank estimation using higher order singular value decomposition and information criteria, IEEE Trans. Signal Process., 65, 5, 1196-1206 (2017) · Zbl 1414.94715
[14] Mei, J.-J.; Dong, Y.; Huang, T.-Z.; Yin, W., Cauchy noise removal by nonconvex ADMM with convergence guarantees, J. Sci. Comput., 74, 2, 743-766 (2018) · Zbl 06858871
[15] Ding, M.; Huang, T.-Z.; Wang, S.; Mei, J.-J.; Zhao, X.-L., Total variation with overlapping group sparsity for deblurring images under cauchy noise, Appl. Math. Comput., 341, 128-147 (2019) · Zbl 1428.94021
[16] N.D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E.E. Papalexakis, C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Trans. Signal Process. 65 (13) 3551-3582.; N.D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E.E. Papalexakis, C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Trans. Signal Process. 65 (13) 3551-3582. · Zbl 1415.94232
[17] Liu, J.; Musialski, P.; Wonka, P.; Ye, J., Tensor completion for estimating missing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1, 208-220 (2013)
[18] Candès, E. J.; Recht, B., Exact matrix completion via convex optimization, Found. Comput. Math., 9, 6, 717-772 (2009) · Zbl 1219.90124
[19] Candès, E. J.; Plan, Y., Matrix completion with noise, Proc. IEEE, 98, 6, 925-936 (2010)
[20] Tan, H.; Cheng, B.; Wang, W.; Zhang, Y.-J.; Ran, B., Tensor completion via a multi-linear low-\(n\)-rank factorization model, Neurocomputing, 133, 161-169 (2014)
[21] Filipović, M.; Jukić, A., Tucker factorization with missing data with application to low-\(n\)-rank tensor completion, Multidimens. Syst. Signal Process., 26, 3, 677-692 (2015) · Zbl 1435.94066
[22] Hillar, C. J.; Lim, L.-H., Most tensor problems are NP-hard, J. ACM, 60, 6 (2013) · Zbl 1281.68126
[23] Ma, T.-H.; Lou, Y.; Huang, T.-Z., Truncated \(\ell_{1 - - 2}\) models for sparse recovery and rank minimization, SIAM J. Imaging Sci., 10, 3, 1346-1380 (2017) · Zbl 1397.94021
[24] Recht, B.; Fazel, M.; Parrilo, P. A., Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52, 3, 471-501 (2010) · Zbl 1198.90321
[25] Toh, K.-C.; Yun, S., An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems, Pac. J. Optim., 6, 3, 615-640 (2010) · Zbl 1205.90218
[26] Gandy, S.; Recht, B.; Yamada, I., Tensor completion and low-\(n\)-rank tensor recovery via convex optimization, Inverse Probl., 27, 2 (2011) · Zbl 1211.15036
[27] Xu, Y.; Hao, R.; Yin, W.; Su, Z., Parallel matrix factorization for low-rank tensor completion, Inverse Probl. Imaging, 9, 2, 601-624 (2015) · Zbl 1359.15021
[28] Ji, T.-Y.; Huang, T.-Z.; Zhao, X.-L.; Ma, T.-H.; Liu, G., Tensor completion using total variation and low-rank matrix factorization, Inf. Sci., 326, 243-257 (2016) · Zbl 1387.94038
[29] Jiang, T.-X.; Huang, T.-Z.; Zhao, X.-L.; Ji, T.-Y.; Deng, L.-J., Matrix factorization for low-rank tensor completion using framelet prior, Inf. Sci., 436, 403-417 (2018) · Zbl 1448.15015
[30] Zhang, Z.; Aeron, S., Exact tensor completion using t-SVD, IEEE Trans. Signal Process., 65, 6, 1511-1526 (2017) · Zbl 1414.94741
[31] Zhou, P.; Lu, C.; Lin, Z.; Zhang, C., Tensor factorization for low-rank tensor completion, IEEE Trans. Image Process., 27, 3, 1152-1163 (2018) · Zbl 1409.94796
[32] Liu, X.-Y.; Aeron, S.; Aggarwal, V.; Wang, X., Low-tubal-rank Tensor Completion Using Alternating Minimization (2016)
[33] Guo, X.; Ma, Y., Generalized tensor total variation minimization for visual data recovery?, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3603-3611 (2015)
[34] Yokota, T.; Zhao, Q.; Cichocki, A., Smooth parafac decomposition for tensor completion, IEEE Trans. Signal Process., 64, 20, 5423-5436 (2016) · Zbl 1414.94716
[35] Li, X.; Ye, Y.; Xu, X., Low-rank tensor completion with total variation for visual data inpainting, Proceedings of the AAAI, 2210-2216 (2017)
[36] Yokota, T.; Hontani, H., Simultaneous visual data completion and denoising based on tensor rank and total variation minimization and its primal-dual splitting algorithm, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3843-3851 (2017)
[37] Yokota, T.; Erem, B.; Guler, S.; Warfield, S. K.; Hontani, H., Missing slice recovery for tensors using a low-rank model in embedded space, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 8251-8259 (2018)
[38] Zhao, X.-L.; Wang, F.; Ng, M. K., A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imaging Sci., 7, 1, 456-475 (2014) · Zbl 1296.65093
[39] Cai, J.-F.; Chan, R. H.; Shen, Z., A framelet-based image inpainting algorithm, Appl. Comput. Harmon. Anal., 24, 2, 131-149 (2008) · Zbl 1135.68056
[40] He, W.; Zhang, H.; Zhang, L., Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., 55, 7, 3909-3921 (2017)
[41] Fu, X.; Ma, W. K.; Bioucas-Dias, J. M.; Chan, T. H., Semiblind hyperspectral unmixing in the presence of spectral library mismatches, IEEE Trans. Geosci. Remote Sens., 54, 9, 5171-5184 (2016)
[42] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 3, 455-500 (2009) · Zbl 1173.65029
[43] Ron, A.; Shen, Z., Affine systems in \(L_2(R^d)\): the analysis of the analysis operator, J. Funct. Anal., 148, 2, 408-447 (1997) · Zbl 0891.42018
[44] Chai, A.; Shen, Z., Deconvolution: a wavelet frame approach, Numerische Mathematik, 106, 4, 529-587 (2007) · Zbl 1120.65134
[45] Parikh, N.; Boyd, S., Proximal algorithms, Found. Trends Optim., 1, 3, 127-239 (2014)
[46] Razaviyayn, M.; Hong, M.; Luo, Z.-Q., A unified convergence analysis of block successive minimization methods for nonsmooth optimization, SIAM J. Optim., 23, 2, 1126-1153 (2013) · Zbl 1273.90123
[47] Zhang, G.; Xu, Y.; Fang, F., Framelet-based sparse unmixing of hyperspectral images, IEEE Trans. Image Process., 25, 4, 1516-1529 (2016) · Zbl 1408.94795
[48] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 1-122 (2011) · Zbl 1229.90122
[49] Wen, Z.; Yin, W.; Zhang, Y., Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, Math. Program. Comput., 4, 4, 333-361 (2012) · Zbl 1271.65083
[50] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, 13, 4, 600-612 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.