×

Non-normal purely log terminal centres in characteristic \(p \geqslant 3\). (English) Zbl 1461.14021

The Minimal Model Program (MMP) is an important tool in the classification of higher dimensional algebraic varieties. In complete generality the MMP is still a conjecture but after the breakthrough result in [C. Birkar et al., J. Am. Math. Soc. 23, No. 2, 405–468 (2010; Zbl 1210.14019)] the situation in characteristic zero is well understood. Over a field of characteristic \(p > 0\) instead, there are very few known results, in particular existence of flips is still an open conjecture. In [C. Hacon and C. Xu, J. Am. Math. Soc. 28, No. 3, 711–744 (2015; Zbl 1326.14032)] the authors were able to show that plt centers for threefolds are normal over algebraically closed fields of characteristic \(p > 5\). This allowed them to prove existence of pl-flips in that case. Unfortunately normality of plt centers does not holds in general: the first counterexample was found in [P. Cascini and H. Tanaka, Am. J. Math. 141, No. 4, 941–979 (2019; Zbl 1460.14040)] in characteristic two. In the paper under review, the author constructs new examples of non-normal plt centers for every prime \(p > 3\).

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
14J17 Singularities of surfaces or higher-dimensional varieties

References:

[1] Achinger, P., Zdanowicz, M.: Non-liftable Calabi-Yau varieties in characteristic \[p \geqslant 5\] p⩾5 (2017). arXiv:1710.08202v1 · Zbl 1386.14056
[2] Bernasconi, F.: Kawamata-Viehweg vanishing fails for log del Pezzo surfaces in char. 3 (2017). arXiv:1709.09238v1 · Zbl 1505.14036
[3] Birkar, C.: Existence of flips and minimal models for 3-folds in char \[p\] p. Ann. Sci. Éc. Norm. Supér. (4) 49(1), 169-212 (2016) · Zbl 1346.14040 · doi:10.24033/asens.2279
[4] Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23(2), 405-468 (2010) · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[5] Birkar, C., Waldron, J.: Existence of Mori fibre spaces for 3-folds in \[{\rm char}\, p\] charp. Adv. Math. 313, 62-101 (2017) · Zbl 1373.14019 · doi:10.1016/j.aim.2017.03.032
[6] Cascini, P., Tanaka, H.: Purely log terminal threefolds with non-normal centres in characteristic two (2016). arXiv:1607.08590v1 · Zbl 1460.14040
[7] Cascini, P., Tanaka, H., Xu, C.: On base point freeness in positive characteristic. Ann. Sci. Éc. Norm. Supér. (4) 48(5), 1239-1272 (2015) · Zbl 1408.14020 · doi:10.24033/asens.2269
[8] Di Cerbo, G., Fanelli, A.: Effective Matsusaka’s theorem for surfaces in characteristic \[p\] p. Algebra Number Theory 9(6), 1453-1475 (2015) · Zbl 1386.14133 · doi:10.2140/ant.2015.9.1453
[9] Ekedahl, T.: Canonical models of surfaces of general type in positive characteristic. Inst. Hautes Études Sci. Publ. Math. 67, 97-144 (1988) · Zbl 0674.14028 · doi:10.1007/BF02699128
[10] Gongyo, Y., Nakamura, Y., Tanaka, H.: Rational points on log Fano threefolds over a finite field (2015). arXiv:1512.05003v3 · Zbl 1462.14045
[11] Hacon, C., Witaszek, J.: On the rationality of Kawamata log terminal singularities in positive characteristic (2017). arXiv:1706.03204v2 · Zbl 1439.14056
[12] Hacon, CD; McKernan, J.; Corti, A. (ed.), Extension theorems and the existence of flips, No. 35, 76-110 (2007), Oxford · Zbl 1286.14026 · doi:10.1093/acprof:oso/9780198570615.003.0005
[13] Hacon, C.D., Xu, C.: On the three dimensional minimal model program in positive characteristic. J. Amer. Math. Soc. 28(3), 711-744 (2015) · Zbl 1326.14032 · doi:10.1090/S0894-0347-2014-00809-2
[14] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) · Zbl 0367.14001 · doi:10.1007/978-1-4757-3849-0
[15] Hashizume, K., Nakamura, Y., Tanaka, H.: Minimal model program for log canonical threefolds in positive characteristic (2017). arXiv:1711.10706v1 · Zbl 1472.14018
[16] Kollár, J.: Singularities of the Minimal Model Program. Cambridge Tracts in Mathematics, vol. 200. Cambridge University Press, Cambridge (2013). With a collaboration of Sándor Kovács · Zbl 1282.14028 · doi:10.1017/CBO9781139547895
[17] Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998). With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[18] Kovács, S.: Non-Cohen-Macaulay canonical singularities (2017). arXiv:1703.02080v2 · Zbl 1407.14001
[19] Lauritzen, N., Rao, A.P.: Elementary counterexamples to Kodaira vanishing in prime characteristic. Proc. Indian Acad. Sci. Math. Sci. 107(1), 21-25 (1997) · Zbl 0907.14005 · doi:10.1007/BF02840470
[20] Lazarsfeld, R.: Positivity in Algebraic Geometry. II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 49. Springer, Berlin (2004) · Zbl 1093.14500 · doi:10.1007/978-3-642-18810-7
[21] Mukai, S.: Counterexamples to Kodaira’s vanishing and Yau’s inequality in positive characteristics. Kyoto J. Math. 53(2), 515-532 (2013) · Zbl 1291.14038 · doi:10.1215/21562261-2081279
[22] Raynaud, M.; Ramanathan, KG (ed.), Contre-exemple au “vanishing theorem” en caractéristique \[p>0\] p>0, No. 8, 273-278 (1978), Berlin · Zbl 0441.14006
[23] Totaro, B.: The failure of Kodaira vanishing for Fano varieties, and terminal singularities that are not Cohen-Macaulay (2017). arXiv:1710.04364v1 · Zbl 1441.14138
[24] Yasuda, T.: Discrepancies of \[p\] p-cyclic quotient varieties (2017). arXiv:1710.06044v1 · Zbl 1441.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.