×

Properties of high rank subvarieties of affine spaces. (English) Zbl 1460.14138

Summary: We use tools of additive combinatorics for the study of subvarieties defined by high rank families of polynomials in high dimensional \(\mathbb{F}_q\)-vector spaces. In the first, analytic part of the paper we prove a number properties of high rank systems of polynomials. In the second, we use these properties to deduce results in Algebraic Geometry , such as an effective Stillman conjecture over algebraically closed fields, an analogue of Nullstellensatz for varieties over finite fields, and a strengthening of a recent result of A. Bik et al. [Commun. Contemp. Math. 21, No. 7, Article ID 1850062, 24 p. (2019; Zbl 1425.15021)]. We also show that for \(k\)-varieties \(\mathbb{X} \subset \mathbb{A}^n\) of high rank any weakly polynomial function on a set \(\mathbb{X}(k) \subset k^n\) extends to a polynomial.

MSC:

14R05 Classification of affine varieties
05E14 Combinatorial aspects of algebraic geometry
14G15 Finite ground fields in algebraic geometry
15A69 Multilinear algebra, tensor calculus

Citations:

Zbl 1425.15021

References:

[1] T. Ananyan and M. Hochster. Strength conditions, small subalgebras, and Stillman bounds in degree \(\le 4. 1810.00413\) · Zbl 1452.13017
[2] V. Bergelson, T. Tao and T. Ziegler. An inverse theorem for the uniformity seminorms associated with the action of \({\mathbb{F}}^{\infty } \). Geom. Funct. Anal. (6)19 (2010), 1539-1596 · Zbl 1189.37007
[3] A. Bhowmick and S. Lovett. Bias vs structure of polynomials in large fields, and applications in effective algebraic geometry and coding theory. arXiv:1506.02047
[4] A. Bik, J. Draisma and R. Eggermont. Polynomials and tensors of bounded strength. Preprint available arXiv:1805.01816 · Zbl 1425.15021
[5] Gowers, T., A new proof of Szemerédi’s theorem, Geom. Funct. Anal., 11, 465-588 (2001) · Zbl 1028.11005 · doi:10.1007/s00039-001-0332-9
[6] W. T. Gowers and L. Milićević. A quantitative proof for the \(U^4\) norm over finite fields. 1712.00241 · Zbl 1456.11014
[7] Green, B.; Tao, T., The distribution of polynomials over finite fields, with applications to the Gowers norms, Contrib. Discrete Math., 4, 2, 1-36 (2009) · Zbl 1225.11017
[8] H. Hatami, P. Hatami and S Lovett. Higher order Fourier analysis and applications. Available at http://cseweb.ucsd.edu/slovett/files/survey-higher-order-fourier.pdf · Zbl 1291.11026
[9] E. Haramaty and A. Shpilka. On the structure of cubic and quartic polynomials, STOC (2010) · Zbl 1293.11104
[10] E. Hrushovski. The Elementary Theory of the Frobenius AutomorphismsarXiv: 0406514
[11] O. Janzer. Polynomial bound for the partition rank vs the analytic rank of tensorsLow analytic rank implies low partition rank for tensors. 1902.11207 · Zbl 1475.11023
[12] T. Kaufman and S. Lovett. Worst case to average case reductions for polynomials. Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (2008), 166-175
[13] Kaufman, T.; Ron, D., Testing polynomials over general fields, SIAM J. Comput., 36, 3, 779-802 (2006) · Zbl 1120.68058 · doi:10.1137/S0097539704445615
[14] D. Kazhdan and T. Ziegler. Extending linear and quadratic functions from high rank varieties. 1712.01335
[15] Kazhdan, D.; Ziegler, T., Polynomials as splines, Sel. Math. New Ser., 25, 31 (2019) · Zbl 1409.05217 · doi:10.1007/s00029-019-0476-9
[16] Kazhdan, D.; Ziegler, T., Approximate cohomology., Sel. Math. New Ser., 24, 499 (2018) · Zbl 1430.11017 · doi:10.1007/s00029-017-0335-5
[17] A. Lampert. Bias implies low rank for quartic polynomials. M.Sc. Thesis, October 2018. Available at 1902.10632
[18] Lang, S.; Weil, A., Number of points of varieties in finite fields, Amer. J. Math., 76, 819-827 (1954) · Zbl 0058.27202 · doi:10.2307/2372655
[19] S. Lovett. The Analytic rank of tensors and its applications. Discrete Analysis. 7(2019) · Zbl 1431.15017
[20] S. Lovett, R. Meshulam. A. Samorodnitsky. Inverse conjecture for the Gowers norm is false, STOC (2008) · Zbl 1282.11009
[21] Matsumura, H., Commutative ring theory. Cambridge Studies in Advanced Mathematics (1989), Cambridge: Cambridge University Press, Cambridge · Zbl 0666.13002
[22] L. Milićević. Polynomial bound for partition rank in terms of analytic rank 1902.09830 · Zbl 1442.11027
[23] Schmidt, W., The density of integer points on homogeneous varieties, Acta Math., 154, 3-4, 243-296 (1985) · Zbl 0561.10010 · doi:10.1007/BF02392473
[24] Tao, T.; Ziegler, T., The inverse conjecture for the Gowers norm over finite fields via the correspondence principle, Analysis and PDE, 3, 1, 1-20 (2010) · Zbl 1252.11012 · doi:10.2140/apde.2010.3.1
[25] Tao, T.; Ziegler, T., The inverse conjecture for the Gowers norm over finite fields in low characteristic, Ann. Comb., 16, 1, 121-188 (2012) · Zbl 1306.11015 · doi:10.1007/s00026-011-0124-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.