×

On the field-induced transport of magnetic nanoparticles in incompressible flow: existence of global solutions. (English) Zbl 1459.35317

The authors prove a global-in-time existence result for a weak solution to a model they proposed in [Math. Models Methods Appl. Sci. 29, No. 12, 2321–2357 (2019; Zbl 1425.35151)] and which accounts for the motion of dilute superparamagnetic nanoparticles in fluids influenced by quasi-stationary magnetic fields. They consider two domains \(\Omega \Subset \Omega ^{\prime }\Subset \mathbb{R}^{d}\), \(d=2,3\), and the system \(\rho _{0}u_{t}+\rho _{0}(u\cdot \nabla )u+\nabla p-\mathrm{div}(2\eta Du)=\mu _{0}(m\cdot \nabla )(\alpha _{1}h+\frac{\beta }{2}h_{a})+\frac{\mu _{0}}{2} \mathrm{curl}(m\times (\alpha _{1}h+\frac{\beta }{2}h_{a})\), \(\mathrm{div}(u)=0\), \( c_{t}+u\cdot \nabla c+\mathrm{div}(cV_{\mathrm{part}})=0\), \(-\Delta R=\mathrm{div}(m)\), \( m_{t}+\mathrm{div}(m\otimes (u+V_{\mathrm{part}}))-\sigma \Delta m=\frac{1}{2}\mathrm{curl}\,u\times m- \frac{1}{\tau _{\mathrm{rel}}}(m-\chi (c,h)h)\), in \(\Omega \times (0,T)\), and \( -\Delta R=0\) in \((\Omega ^{\prime }\backslash \Omega )\times (0,T)\), with \( V_{\mathrm{part}}=-KD\frac{f_{2}(c)}{c}\nabla g(c)+K\mu _{0}\frac{f_{2}(c)}{c^{2}} (\nabla (\alpha _{1}h+\frac{\beta }{2}h_{a}-\alpha _{3}m))^{T}m\). The boundary and transmission conditions \(u=0\), \(cV_{\mathrm{part}}\cdot \nu =0\), \( (V_{\mathrm{part}}\cdot \nu )(m-(m\cdot \nu )\nu )-\sigma \mathrm{curl}\,m\times \nu =0\), \( (V_{\mathrm{part}}\cdot \nu )(m\cdot \nu )-\sigma \mathrm{div}m=0\), \([\nabla R+m]\cdot \nu =0\), on \(\partial \Omega \times \lbrack 0,T]\), \(\nabla R\cdot \nu =h_{\alpha }\cdot \nu \) on \(\partial \Omega ^{\prime }\times \lbrack 0,T]\), are added and the initial conditions \(u(\).\(,0)=u^{0}\), \(c(\).\(,0)=c^{0}\), \(m(\).\( ,0)=m^{0}\) are considered. Here \((u,p)\) denotes the hydrodynamic variables of the carrier fluid, \(c\) stands for the number density of the magnetic nanoparticles and \(m\) or \(h=\nabla R\) describe the magnetization or magnetic field, respectively. The vector field \(V_{\mathrm{part}}\) denotes the particle velocity relative to the flow of the carrier fluid. It takes diffusive and magnetic effects into account. The system is driven by the external magnetic field \(h_{a}\) which satisfies Maxwell’s equations in the absence of matter, \( \mathrm{curl}\,h_{a}=0\), \(\mathrm{div}(h_{a})=0\). The proof of the existence result requires smoothness hypotheses on the simply connected domains and on the data. It is based on the construction of discrete spaces for the magnetization and the magnetic potential, then for the velocity field and the particle density. Using the Picard-Lindelöf theorem, the authors prove the existence of global solutions to a discretization of an appropriate transport and mobility regularized version of the above problem. They indeed introduce some cut-off from 0 and regularized parameters. They establish uniform estimates on different terms involving this solution. They prove compactness result on this solution to pass to the limit and to prove the existence of a global-in-time and weak solution to the above problem. They prove an energy estimate on this weak solution. In the last part of their paper, the authors consider the degenerate case. They here prove an existence result using a different approach to regularize the particle density.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q60 PDEs in connection with optics and electromagnetic theory
76W05 Magnetohydrodynamics and electrohydrodynamics
76T20 Suspensions
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1425.35151

References:

[1] Amirat, Y.; Hamdache, K., Global weak solutions to a ferrofluid flow model, Math. Methods Appl. Sci, 31, 2, 123-151 (2008) · Zbl 1136.35071 · doi:10.1002/mma.896
[2] Amirat, Y.; Hamdache, K., Weak solutions to the equations of motion for compressible magnetic fluids, J. Math. Pures Appl., 91, 5, 433-467 (2009) · Zbl 1172.35059 · doi:10.1016/j.matpur.2009.01.015
[3] Amirat, Y.; Hamdache, K., Heat transfer in incompressible magnetic fluid, J. Math. Fluid Mech., 14, 2, 217-247 (2012) · Zbl 1294.76280 · doi:10.1007/s00021-011-0050-5
[4] Amirat, Y.; Hamdache, K., On a heated incompressible magnetic fluid model, Commun. Pure Appl. Anal., 11, 675-696 (2012) · Zbl 1278.35186 · doi:10.3934/cpaa.2012.11.675
[5] Amirat, Y.; Hamdache, K., Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations, Discrete Contin. Dyn. Syst., 33, 8, 3289-3320 (2013) · Zbl 1295.35356 · doi:10.3934/dcds.2013.33.3289
[6] Amirat, Y.; Hamdache, K., Strong solutions to the equations of electrically conductive magnetic fluids, J. Math. Anal. Appl., 421, 1, 75-104 (2015) · Zbl 1300.35064 · doi:10.1016/j.jmaa.2014.06.073
[7] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V., Vector potential in three-dimensional nonsmooth domains, Math. Methods Appl. Sci, 21, 823-864 (1998) · Zbl 0914.35094 · doi:10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
[8] Amrouche, C.; Seloula, N., Lp-theory for vector potentials and sobolev’s inequalities for vector fields: application to the stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci., 23, 1, 37-92 (2013) · Zbl 1260.35101 · doi:10.1142/S0218202512500455
[9] Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications, Mathematical Analysis and Numerical Methods for Science and Technology, Springer, Berlin (1990) · Zbl 0766.47001
[10] Dellacherie, C., Meyer, P.A., Maisonneuve, B.: Probabilités et potentiel, Actualités Sci. Indust., no. Bd. 1, Hermann (1975) · Zbl 0323.60039
[11] DiBenedetto, E., Degenerate Parabolic Equations, Universitext (1993), New York: Springer, New York · Zbl 0794.35090 · doi:10.1007/978-1-4612-0895-2
[12] Galdi, G.: An introduction to the mathematical theory of the Navier-Stokes equations 1, 01 (2011) · Zbl 1245.35002
[13] Giacomelli, L.; Grün, G., Lower bounds on waiting times for degenerate parabolic equations and systems, Interfaces Free Bound., 8, 1, 111-129 (2006) · Zbl 1100.35058 · doi:10.4171/IFB/137
[14] Girault, V.; Raviart, PA, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics (1986), Berlin: Springer, Berlin · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[15] Girault, V.; Raviart, PA, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics (1981), Berlin: Springer, Berlin · Zbl 0441.65081
[16] Grün, G., Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening, Z. Anal. Anwend., 14, 541-574 (1995) · Zbl 0835.35061 · doi:10.4171/ZAA/639
[17] Grün, G.; Weiß, P., On the field-induced transport of magnetic nanoparticles in incompressible flow: modeling and numerics, Math. Models Methods Appl. Sci., 29, 12, 2321-2357 (2019) · Zbl 1425.35151 · doi:10.1142/S0218202519500477
[18] Himmelsbach, D.; Neuss-Radu, M.; Neuß, N., Mathematical modelling and analysis of nanoparticle gradients induced by magnetic fields, J. Math. Anal. Appl., 461, 1544-1560 (2018) · Zbl 1386.82082 · doi:10.1016/j.jmaa.2017.12.026
[19] Nochetto, RH; Salgado, AJ; Tomas, I., A diffuse interface model for two-phase ferrofluid flows, Comput. Methods Appl. Mech. Eng., 309, 497-531 (2016) · Zbl 1439.76088 · doi:10.1016/j.cma.2016.06.011
[20] Nochetto, RH; Salgado, AJ; Tomas, I., The equations of ferrohydrodynamics: modeling and numerical methods, Math. Models Methods Appl. Sci., 26, 13, 2393-2449 (2016) · Zbl 1416.76347 · doi:10.1142/S0218202516500573
[21] Odenbach, S.; Thurm, S., Magnetoviscous effects in ferrofluids, Ferrofluids: Magnetically Controllable Fluids and Their Applications, 185-201 (2002), Berlin: Springer, Berlin · Zbl 0994.76002 · doi:10.1007/3-540-45646-5
[22] Polevikov, V.; Tobiska, L., On the solution of the steady-state diffusion problem for ferromagnetic particles in a magnetic fluid, Math. Model. Anal., 13, 2, 233-240 (2008) · Zbl 1255.76127 · doi:10.3846/1392-6292.2008.13.233-240
[23] Rosensweig, RE, Ferrohydrodynamics, Dover Books on Physics (1997), New York: Dover Publications, New York
[24] Rosensweig, R.E.: Basic equations for magnetic fluids with internal rotations. In: Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer, Berlin, pp. 61-84 (2002)
[25] Shliomis, M.I.: Ferrohydrodynamics: Retrospective and Issues, Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer, Berlin, pp. 85-111 (2002)
[26] Simon, J., Compact sets in the space \(L^p(0, T;B)\), Ann. Mat. Pura Appl., 146, 1, 65-96 (1986) · Zbl 0629.46031 · doi:10.1007/BF01762360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.