×

Hilbert matrix on spaces of Bergman-type. (English) Zbl 1456.47011

Summary: It is well known (see [M. Jevtić and B. Karapetrović, “Libera operator on mixed norm spaces \(H_\nu^{p, q, \alpha}\) when \(0 <p < 1\)”, Filomat 31, No. 14, 4641–4650 (2017; doi:10.2298/FIL1714641J); M. Pavlović, “Definition and properties of the Libera operator on mixed norm spaces”, The Scientific World Journal 2014, Article ID 590656, 15 p. (2014; doi:10.1155/2014/590656)]) that the Libera operator \(\mathcal{L}\) is bounded on the Besov space \(H_\nu^{p, q, \alpha}\) if and only if \(0 < \kappa_{p, \alpha, \nu} : = \nu - \alpha - \frac{1}{p} + 1\). We prove unexpected results: the Hilbert matrix operator \(H\), as well as the modified Hilbert operator \(\tilde{H}\), is bounded on \(H_\nu^{p, q, \alpha}\) if and only if \(0 < \kappa_{p, \alpha, \nu} < 1\). In particular, \(H\), as well as \(\tilde{H}\), is bounded on the Bergman space \(A^{p, \alpha}\) if and only if \(1 < \alpha + 2 < p\) and is bounded on the Dirichlet space \(\mathcal{D}_\alpha^p = A_1^{p, \alpha}\) if and only if \(\max \{- 1, p - 2 \} < \alpha < 2 p - 2\). Our results are substantial improvement of [B. Łanucha et al., Ann. Acad. Sci. Fenn., Math. 37, No. 1, 161–174 (2012; Zbl 1258.47047), Theorem 3.1] and of [P. Galanopoulos et al., Ann. Acad. Sci. Fenn., Math. 39, No. 1, 231–258 (2014; Zbl 1297.47030), Theorem 5].

MSC:

47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
30H20 Bergman spaces and Fock spaces
Full Text: DOI

References:

[1] Ahern, P.; Jevtić, M., Duality and multipliers for mixed norm spaces, Michigan Math. J., 30, 53-64 (1983) · Zbl 0538.30039
[2] Diamantopoulos, E.; Siskakis, A. G., Composition operators and the Hilbert matrix, Studia Math., 140, 2, 191-198 (2000) · Zbl 0980.47029
[3] Dostanić, M.; Jevtić, M.; Vukotić, D., Norm of the Hilbert matrix on Bergman and Hardy spaces and theorem of Nehari type, J. Funct. Anal., 254, 2800-2815 (2008) · Zbl 1149.47017
[4] Duren, P. L., Theory of \(H^p\) Spaces (2000), Academic Press: Academic Press New York: Dover: Academic Press: Academic Press New York: Dover Mineola, NY, reprinted edition with supplements: · Zbl 0215.20203
[5] Duren, P. L.; Schuster, P., Bergman Spaces, Math. Surveys Monogr., vol. 100 (2004), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1059.30001
[6] Galanopoulos, P.; Girela, D.; Pelaez, J. A.; Siskakis, A. G., Generalized Hilbert operators, Ann. Acad. Sci. Fenn. Math., 39, 231-258 (2014) · Zbl 1297.47030
[7] Hedenmalm, H.; Korenblum, B.; Zhu, K., Theory of Bergman Spaces, Grad. Texts in Math., vol. 199 (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0955.32003
[8] Jevtić, M.; Karapetrović, B., Libera operator on mixed norm spaces \(H_\nu^{p, q, \alpha}\) when \(0 < p < 1\), Filomat (2017), in press · Zbl 1483.47060
[9] Jevtić, M.; Vukotić, D.; Arsenović, M., Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces, RSME Springer Series (2016), Springer · Zbl 1368.30001
[10] Karapetrović, B., Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces, Czechoslovak Math. J. (2017), in press · Zbl 1482.47062
[11] Lanucha, B.; Nowak, M.; Pavlović, M., Hilbert matrix operator on spaces of analytic functions, Ann. Acad. Sci. Fenn. Math., 37, 161-174 (2012) · Zbl 1258.47047
[12] Magnus, W., On the spectrum of Hilbert’s matrix, Amer. J. Math., 72, 699-704 (1950) · Zbl 0041.23805
[13] Pavlović, M., Function Classes on the Unit Disc. An Introduction, de Gruyter Stud. Math., vol. 52 (2014) · Zbl 1296.30002
[15] Zhu, K., Operator Theory in Function Spaces (1990), Dekker: Dekker New York · Zbl 0706.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.