×

A framework for modular properties of false theta functions. (English) Zbl 1456.11074

Summary: False theta functions closely resemble ordinary theta functions; however, they do not have the modular transformation properties that theta functions have. In this paper, we find modular completions for false theta functions, which among other things gives an efficient way to compute their obstruction to modularity. This has potential applications for a variety of contexts where false and partial theta series appear. To exemplify the utility of this derivation, we discuss the details of its use on two cases. First, we derive a convergent Rademacher-type exact formula for the number of unimodal sequences via the circle method and extend earlier work on their asymptotic properties. Secondly, we show how quantum modular properties of the limits of false theta functions can be rederived directly from the modular completion of false theta functions proposed in this paper.

MSC:

11F37 Forms of half-integer weight; nonholomorphic modular forms
11F20 Dedekind eta function, Dedekind sums
11F27 Theta series; Weil representation; theta correspondences
11F30 Fourier coefficients of automorphic forms
11F50 Jacobi forms
11P82 Analytic theory of partitions

References:

[1] Alladi, K.: A new combinatorial study of the Rogers-Fine identity and a related partial theta series. Int. J. Number Theory 5, 1311-1320 (2009) · Zbl 1180.05013 · doi:10.1142/S1793042109002675
[2] Andrews, G.: Ramanujan’s “lost” notebook I. Partial \[\theta\] θ-functions. Adv. Math. 41, 137-172 (1981) · Zbl 0477.33001 · doi:10.1016/0001-8708(81)90013-X
[3] Apostol, T.: Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, vol. 41. Springer, New York (1990) · Zbl 0697.10023 · doi:10.1007/978-1-4612-0999-7
[4] Auluck, F.: On some new types of partitions associated with generalized Ferrers graphs. Proc. Camb. Philos. Soc. 47, 679-686 (1951) · Zbl 0043.04502 · doi:10.1017/S0305004100027134
[5] Bringmann, K., Creutzig, T., Rolen, L.: Negative index Jacobi forms and quantum modular forms. Res. Math. Sci. 1, 1-11 (2014) · Zbl 1349.11085 · doi:10.1186/s40687-014-0011-8
[6] Bringmann, K., Milas, A.: \[WW\]-algebras, false theta functions, and quantum modular forms, I. Int. Math. Res. Not. 21, 11351-11387 (2015) · Zbl 1359.17039 · doi:10.1093/imrn/rnv033
[7] Cheng, M., Chun, S., Ferrari, F., Gukov, S., Harrison, S.: 3d Modularity. arXiv:1809.10148 [hep-th] · Zbl 1427.81118
[8] Chung, H.: BPS Invariants for Seifert Manifolds. arXiv:1811.08863 [hep-th] · Zbl 1435.81195
[9] Cohen, H., Strömberg, F.: Modular Forms: A Classical Approach—Graduate Studies in Mathematics, vol. 179. Amer. Math. Soc, Providence (2017) · Zbl 1464.11001 · doi:10.1090/gsm/179
[10] Creutzig, T., Milas, A.: False theta functions and the Verlinde formula. Adv. Math. 262, 520-545 (2014) · Zbl 1293.81037 · doi:10.1016/j.aim.2014.05.018
[11] Creutzig, T., Milas, A., Wood, S.: On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions. Int. Math. Res. Not. 2017, 1390-1432 (2017) · Zbl 1405.17053
[12] Fine, N.: Basic hypergeometric series and applications. In: Mathematical Surveys and Monographs, vol. 27, Amer. Math. Soc., Providence (1988) · Zbl 0647.05004
[13] Garoufalidis, S., Lê, T.: Nahm sums, stability and the colored Jones polynomial. Res. Math. Sci. 2, 1 (2015) · Zbl 1334.57021 · doi:10.1186/2197-9847-2-1
[14] Hikami, S.: Mock (false) theta functions as quantum invariants. Regul. Chaotic Dyn. 10, 509-530 (2005) · Zbl 1133.57301 · doi:10.1070/RD2005v010n04ABEH000328
[15] Lawrence, R., Zagier, D.: Modular forms and quantum invariants of \[33\]-manifolds. Asian J. Math. 3, 93-107 (1999) · Zbl 1024.11028 · doi:10.4310/AJM.1999.v3.n1.a5
[16] Rademacher, H.: On the partition function \[p(n)\] p(n). Proc. Lond. Math. Soc. 43, 241-254 (1937) · JFM 63.0140.02
[17] Ramanujan, S.: The Last Notebook and Other Unpublished Papers. Narosa, New Delhi (1988) · Zbl 0639.01023
[18] Shimura, G.: On modular forms of half-integral weight. Ann. Math. 97, 440-481 (1973) · Zbl 0266.10022 · doi:10.2307/1970831
[19] Wright, E.: Stacks (II). Quart. J. Math. Oxford Ser. 22, 107-116 (1971) · Zbl 0215.33601 · doi:10.1093/qmath/22.1.107
[20] Zagier, D.: Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology 40, 945-960 (2001) · Zbl 0989.57009 · doi:10.1016/S0040-9383(00)00005-7
[21] Zagier, D.: Quantum modular forms. In: Clay Mathematics Proceedings , vol. 11, Amer. Math. Soc., Providence (2010) · Zbl 1294.11084
[22] Zwegers, S.: Mock theta functions. Ph.D. Thesis, Universiteit Utrecht (2002) · Zbl 1194.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.