×

The combinatorial geometry of stresses in frameworks. (English) Zbl 1456.05120

Summary: Consider a realization of a graph in the space with straight segments representing edges. Let us assign a stress for every its edge. In case if at every vertex of the graph the stresses sum up to zero, we say that the realization is a tensegrity. Some realizations possess non-zero tensegrities while the others do not. In this paper we study necessary and sufficient existence conditions for tensegrities in the plane. For an arbitrary graph we write down these conditions in terms of projective “meet-join” operations.

MSC:

05C62 Graph representations (geometric and intersection representations, etc.)

References:

[1] Caspar, DLD; Klug, A., Physical principles in the construction of regular viruses, Proc. Cold Spring Harb. Sympos. Quant. Biol., 27, 1-24 (1962) · doi:10.1101/SQB.1962.027.001.005
[2] Cheng, J., Sitharam, M., Streinu, I.: Nucleation-free \(3D\) rigidity (2013). arXiv:1311.4859
[3] Connelly, R., What is \(\ldots\) a tensegrity?, Not. Am. Math. Soc., 60, 1, 78-80 (2013) · Zbl 1284.05001
[4] Connelly, R.; Whiteley, W., Second-order rigidity and prestress stability for tensegrity frameworks, SIAM J. Discrete Math., 9, 3, 453-491 (1996) · Zbl 0855.52006 · doi:10.1137/S0895480192229236
[5] Crapo, H.; Whiteley, W., Statics of frameworks and motions of panel structures, a projective geometric introduction, Struct. Topol., 1982, 6, 43-82 (1982) · Zbl 0533.73068
[6] Cretu, S-M; Brinzan, G-C, Tensegrity applied to modelling the motion of viruses, Acta Mech. Sin., 27, 1, 125-129 (2011) · Zbl 1344.92194 · doi:10.1007/s10409-011-0402-7
[7] Doray, F.; Karpenkov, O.; Schepers, J., Geometry of configuration spaces of tensegrities, Discrete Comput. Geom., 43, 2, 436-466 (2010) · Zbl 1213.05181 · doi:10.1007/s00454-009-9229-4
[8] Doubilet, P.; Rota, G-C; Stein, J., On the foundations of combinatorial theory: IX Combinatorial methods in invariant theory, Stud. Appl. Math., 53, 185-216 (1974) · Zbl 0426.05009 · doi:10.1002/sapm1974533185
[9] de Guzmán, M., Orden, D.: Finding tensegrity structures: geometric and symbolic approaches. In: Encuentros de Álgebra Computacional y Aplicaciones (Santander 2004), pp. 167-172 (2004)
[10] de Guzmán, M.; Orden, D., From graphs to tensegrity structures: geometric and symbolic approaches, Publ. Mat., 50, 2, 279-299 (2006) · Zbl 1113.05094 · doi:10.5565/PUBLMAT_50206_02
[11] Haas, R.; Orden, D.; Rote, G.; Santos, F.; Servatius, B.; Servatius, H.; Souvaine, D.; Streinu, I.; Whiteley, W., Planar minimally rigid graphs and pseudo-triangulations, Comput. Geom., 31, 1-2, 31-61 (2005) · Zbl 1070.65014 · doi:10.1016/j.comgeo.2004.07.003
[12] Ingber, DE, Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton, J. Cell Sci., 104, 613-627 (1993)
[13] Ingber, D.E., Wang, N., Stamenović, D.: Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77(4), # 046603 (2014)
[14] Izmestiev, I., Projective background of the infinitesimal rigidity of frameworks, Geom. Dedicata, 140, 183-203 (2009) · Zbl 1169.52010 · doi:10.1007/s10711-008-9339-9
[15] Jackson, B.; Jordán, T.; Servatius, B.; Servatius, H., Henneberg moves on mechanisms, Beitr. Algebra Geom., 56, 2, 587-591 (2015) · Zbl 1367.52020 · doi:10.1007/s13366-014-0217-3
[16] Jackson, B.; Nixon, A., Stress matrices and global rigidity of frameworks on surfaces, Discrete Comput. Geom., 54, 3, 586-609 (2015) · Zbl 1326.52020 · doi:10.1007/s00454-015-9724-8
[17] Karpenkov, O.; Schepers, J.; Servatius, B., On stratifications for planar tensegrities with a small number of vertices, Ars Math. Contemp., 6, 2, 305-322 (2013) · Zbl 1303.52013 · doi:10.26493/1855-3974.299.678
[18] Kitson, D.; Power, SC, Infinitesimal rigidity for non-Euclidean bar-joint frameworks, Bull. Lond. Math. Soc., 46, 4, 685-697 (2014) · Zbl 1303.52014 · doi:10.1112/blms/bdu017
[19] Kitson, D.; Schulze, B., Maxwell-Laman counts for bar-joint frameworks in normed spaces, Linear Algebra Appl., 481, 313-329 (2015) · Zbl 1318.52018 · doi:10.1016/j.laa.2015.05.007
[20] Li, H., Invariant Algebras and Geometric Reasoning (2008), Hackensack: World Scientific, Hackensack · Zbl 1151.15027 · doi:10.1142/6514
[21] Maxwell, JC, On reciprocal figures and diagrams of forces, Philos. Mag., 27, 250-261 (1864) · doi:10.1080/14786446408643663
[22] Motro, R., Tensegrity. Structural Systems for the Future (2003), London: Kogan Page Science, London
[23] Roth, B.; Whiteley, W., Tensegrity frameworks, Trans. Am. Math. Soc., 265, 2, 419-446 (1981) · Zbl 0479.51015 · doi:10.1090/S0002-9947-1981-0610958-6
[24] Saliola, F.V., Whiteley, W.: Some notes on the equivalence of first-order rigidity in various geometries (2007). arXiv:0709.3354
[25] Skelton, R.E.: Deployable tendon-controlled structure. United States Patent 5642590 (1997)
[26] Snelson, K.: http://www.kennethsnelson.net
[27] Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999) · Zbl 0928.05001
[28] Teodorescu, P.P.: Mechanical Systems, Classical Models, vol. I. Particle Mechanics. Mathematical and Analytical Techniques with Applications to Engineering. Springer, Dordrecht (2007) · Zbl 1148.70002
[29] Tibert, A.G.: Deployable Tensegrity Structures for Space Applications. PhD thesis, Royal Institute of Technology, Stockholm (2002). http://www-civ.eng.cam.ac.uk/dsl/publications/TibertDocThesis.pdf
[30] Wang, M., Sitharam, M.: Combinatorial rigidity and independence of generalized pinned subspace-incidence constraint systems. In: Automated Deduction in Geometry. Lecture Notes in Computer Science, vol. 9201, pp. 166-180. Springer, Cham (2015) · Zbl 1439.05172
[31] White, NL, The bracket ring of a combinatorial geometry. I, Trans. Am. Math. Soc., 202, 79-95 (1975) · Zbl 0303.05022 · doi:10.1090/S0002-9947-1975-0387095-9
[32] White, N.L., McMillan, T.: Cayley factorization. In: Symbolic and Algebraic Computation (Rome 1988). Lecture Notes in Computer Science, vol. 358, pp. 521-533. Springer, Berlin (1989)
[33] White, NL; Whiteley, W., The algebraic geometry of stresses in frameworks, SIAM J. Algebr. Discrete Methods, 4, 4, 481-511 (1983) · Zbl 0542.51022 · doi:10.1137/0604049
[34] White, N.; Whiteley, W., The algebraic geometry of motions of bar-and-body frameworks, SIAM J. Algebr. Discrete Methods, 8, 1, 1-32 (1987) · Zbl 0635.51014 · doi:10.1137/0608001
[35] Whiteley, W.: The projective geometry of rigid frameworks. In: Finite Geometries (Winnipeg 1984). Lecture Notes in Pure and Applied Mathematics, vol. 103, pp. 353-370. Marcel Dekker, New York (1985) · Zbl 0577.51018
[36] Whiteley, W.: Rigidity and scene analysis. In: Handbook of Discrete and Computational Geometry. CRC Press Series: Discrete Mathematics and its Applications, pp. 893-916, CRC, Boca Raton (1997) · Zbl 0902.52008
[37] http://expedition.uk.com/projects/tensegritree-university-of-kent/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.