×

Composite anti-disturbance model reference adaptive control for switched systems. (English) Zbl 1453.93135

Summary: This paper investigates the problem of the composite anti-disturbance model reference adaptive control for switched systems with parametric uncertainties and multiple types of disturbances. It is worth emphasizing that the measurability of the system state and the disturbance generated by an exosystem is unnecessary. A key point is to design a composite anti-disturbance model reference adaptive control strategy to achieve the state tracking and the anti-disturbance performance. First, a switched adaptive state-disturbance observer is designed to estimate the system state and the disturbance generated by the exosystem simultaneously. Secondly, based on the switched adaptive state-disturbance observer, a composite switched adaptive controller and a state-dependent switching law are designed to solve the composite anti-disturbance model reference adaptive control problem for switched systems. Thirdly, a sufficient condition ensuring the solvability of the composite anti-disturbance model reference adaptive control problem for switched systems is given, even if the problem is unsolvable for individual subsystems. Finally, an example of the electrohydraulic system is used to verify the availability of the acquired approach.

MSC:

93C40 Adaptive control/observation systems
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93B53 Observers
Full Text: DOI

References:

[1] An, L. W.; Yang, G. H., Improved adaptive resilient control against sensor and actuator attacks, Inf. Sci., 423, 145-156 (2018) · Zbl 1447.93160
[2] Branicky, M. S., Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Trans. Autom. Control, 43, 4, 475-482 (1998) · Zbl 0904.93036
[3] Bernardo, M.d.; Montanaro, U.; Santini, S., Hybrid model reference adaptive control of piecewise affine systems, IEEE Trans. Autom. Control, 58, 2, 304-316 (2013) · Zbl 1369.93325
[4] Cao, Y. Y.; Sun, Y. X.; Cheng, C. W., Delay dependent robust stabilization of uncertain systems with multiple state delays, IEEE Trans. Autom. Control, 43, 11, 1608-1612 (1998) · Zbl 0973.93043
[5] Guo, L.; Wen, X. Y., Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems, Trans. Inst. Measur. Control, 33, 8, 942-956 (2011)
[6] Guo, L.; Chen, W. H., Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Int. J. Robust Nonlinear Control, 15, 3, 109-125 (2005) · Zbl 1078.93030
[7] Gibson, T. E.; Qu, Z.; Annaswamy, A. M.; Lavretsky, E., Adaptive output feedback based on closed-loop reference models, IEEE Trans. Autom. Control, 60, 10, 2728-2733 (2015) · Zbl 1360.93350
[8] Huang, J.; Chen, Z., A general framework for tackling the output regulation problem, IEEE Trans. Autom. Control, 49, 12, 2203-2218 (2004) · Zbl 1365.93446
[9] Han, H. G.; Chen, J. Y.; Karimi, H. R., State and disturbance observers-based polynomial fuzzy controller, Inf. Sci., 382, 38-59 (2017) · Zbl 1432.93196
[10] Kersting, S.; Buss, M., Direct and indirect model reference adaptive control for multivariable piecewise affine systems, IEEE Trans. Autom. Control, 62, 11, 5634-5649 (2017) · Zbl 1390.93442
[11] Kommuri, S. K.; Defoort, M.; Karimi, H. R.; Veluvolu, K. C., A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles, IEEE Trans. Ind. Electron., 63, 12, 7671-7681 (2016)
[12] Kandukuri, S. T.; Klausen, A.; Karimi, H. R.; Robbersmyr, K. G., A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management, Renew. Sustain. Energy Rev., 53, 697-708 (2016)
[13] Liberzon, D., Switching in Systems and Control (2003), Birkhauser: Birkhauser Boston, MA · Zbl 1036.93001
[14] Long, L. J.; Wang, Z.; Zhao, J., Switched adaptive control of switched nonlinearly parameterized systems with unstable subsystems, Automatica, 54, 217-228 (2015) · Zbl 1318.93082
[15] Long, L. J.; Zhao, J., Adaptive disturbance rejection for strict-feedback switched nonlinear systems using multiple Lyapunov functions, Int. J. Robust Nonlinear Control, 24, 13, 1887-1902 (2014) · Zbl 1301.93092
[16] Niu, B.; Liu, Y. J.; Zong, G. D.; Han, Z. Y.; Fu, J., Command filter-based adaptive neural tracking controller design for uncertain switched nonlinear output-constrained systems, IEEE Trans. Cybern., 47, 10, 3160-3171 (2017)
[17] Ohishi, K.; Nakao, M.; Ohnishi, K.; Miyachi, K., Microprocessor-controlled DC motor for load-insensive position servo system, IEEE Trans. Ind. Electron., 34, 1, 44-49 (1987)
[18] Roy, S. B.; Bhasin, S.; Kar, I. N., Combined MRAC for unknown MIMO LTI systems with parameter convergence, IEEE Trans. Autom. Control, 63, 1, 283-290 (2018) · Zbl 1390.93453
[19] Sun, X. M.; Wang, W., Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics, Automatica, 48, 9, 2359-2364 (2002) · Zbl 1257.93089
[20] Stoten, D. P.; Bulut, S., Application of the MCS algorithm to the control of an electrohydraulic system, Ind. Electron., Control Inst. 1994. IECON’94., 20th Int. Conf. IEEE, 3, 1742-1747 (1994)
[21] Sang, Q.; Tao, G., Adaptive control of piecewise linear systems: the state tracking case, IEEE Trans. Autom. Control, 57, 2, 522-528 (2012) · Zbl 1369.93313
[22] Schaft, A.v., \(l_2\)-gain analysis of nonlinear systems and nonlinear state feedback \(h_∞\) control, IEEE Trans. Autom. Control, 37, 6, 6770-6784 (1992)
[23] Sun, H. B.; Hou, L. L., Composite anti-disturbance control for a discrete-time time-varying delay system with actuator failures based on a switching method and a disturbance observer, Nonlinear Anal. Hybrid Syst., 14, 126-138 (2014) · Zbl 1292.93042
[24] Tong, S. C.; Sui, S.; Li, Y. M., Observed-based adaptive fuzzy tracking control for switched nonlinear systems with dead-zone, IEEE Trans. Cybern., 45, 12, 2816-2826 (2015)
[25] Tong, S. C.; Zhang, L. L.; Li, Y. M., Observed-fased adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones, IEEE Trans. Syst. Man Cybern. Syst., 46, 1, 37-47 (2016)
[26] Wei, X. J.; Guo, L., Composite disturbance-observer-based control and \(h_∞\) control for complex continuous models, Int. J. Robust Nonlinear Control, 20, 1, 106-118 (2010) · Zbl 1191.93014
[27] Wei, X. J.; Wu, Z. J.; Karimi, H. R., Disturbance observer-based disturbance attenuation control for a class of stochastic systems, Automatica, 63, 21-25 (2016) · Zbl 1329.93129
[28] Wu, C. Y.; Zhao, J.; Sun, X. M., Adaptive tracking control for uncertain switched systems under asynchronous switching, Int. J. Robust Nonlinear Control, 25, 17, 3457-3477 (2015) · Zbl 1338.93202
[29] Wang, Y. Y.; Xie, L. H.; Souza, C. E., Robust control of a class of uncertain nonlinear systems, Syst. Control Lett., 19, 2, 139-149 (1992) · Zbl 0765.93015
[30] Xie, J.; Yang, D.; Zhao, J., Multiple model adaptive control for switched linear systems: a two-layer switching strategy, Int. J. Robust Nonlinear Control, 28, 6, 2276-2297 (2018) · Zbl 1390.93462
[31] Xie, J.; Zhao, J., \(h_∞\) model reference adaptive control for switched systems based on the switched closed-loop reference model, Nonlinear Anal. Hybrid Syst., 27, 92-106 (2018) · Zbl 1378.93062
[32] Yang, D.; Zhao, J., Dissipativity for switched LPV systems and its application: a parameter and dwell time-dependent multiple storage functions method, IEEE Trans. Syst. Man Cybern. Syst., 99, 1-12 (2017)
[33] Yang, D.; Zhao, J., Robust finite-time output feedback \(h_∞\) control for stochastic jump systems with incomplete transition rates, Circuits Syst. Signal Process., 34, 6, 1799-1824 (2015) · Zbl 1341.93104
[34] Youssef, T.; Chadli, M.; Karimi, H. R.; Wang, R., Actuator and sensor faults estimation based on proportional integral observer for TS fuzzy model, J. Frankl. Inst., 354, 6, 2524-2542 (2017) · Zbl 1398.93202
[35] Yao, X. M.; Guo, L., Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica, 49, 8, 2538-2545 (2013) · Zbl 1364.93102
[36] Yang, D.; Zhao, J., Composite anti-disturbance control for switched systems via mixed state-dependent and time-driven switching, IET Control Theory Appl., 10, 16, 1981-1990 (2016)
[37] Yuan, S.; De Schutter, B.; Baldi, S., Adaptive asymptotic tracking control of uncertain time-driven switched linear systems, IEEE Trans. Autom. Control, 62, 11, 5802-5807 (2017) · Zbl 1390.93467
[38] Zhao, X. D.; Yin, Y. F.; Niu, B.; Zheng, X. L., Stabilization for a class of switched nonlinear systems with novel average dwell time switching by ts fuzzy modeling, IEEE Trans. Cybern., 46, 8, 1952-1957 (2016)
[39] Zhai, G. S.; Hu, B.; Yasuda, K.; Michel, A. N., Disturbance attenuation properties of time-controlled switched systems, J. Frankl. Inst., 338, 7, 765-779 (2001) · Zbl 1022.93017
[40] Zhao, X. D.; Shi, P.; Yin, Y. F.; Nguang, S. K., New results on stability of slowly switched systems: a multiple discontinuous lyapunov function approach, IEEE Trans. Autom. Control, 62, 7, 3502-3509 (2017) · Zbl 1370.34108
[41] Zhao, J.; Hill, D. J., On stability, \(l_2\)-gain and \(h_∞\) control for switched systems, Automatica, 44, 5, 1220-1232 (2008) · Zbl 1283.93147
[42] Zhang, H.; Wei, X.; Karimi, H. R.; Han, J., Anti-disturbance control based on disturbance observer for nonlinear systems with bounded disturbances, J. Frankl. Inst., 355, 12, 4916-4930 (2018) · Zbl 1395.93264
[43] Zhang, D.; Xu, Z.; Karimi, H. R.; Wang, Q. G.; Yu, L., Distributed \(h_∞\) output-feedback control for consensus of heterogeneous linear multi-agent systems with aperiodic sampled-data communications, IEEE Trans. Ind. Electron., 65, 5, 4145-4155 (2018)
[44] Zhang, D.; Xu, Z.; Srinivasan, D.; Yu, L., Leader-follower consensus of multi-agent systems with energy constraints: a markovian system approach, IEEE Trans. Syst., Man, Cybern., Syst, 47, 7, 1727-1736 (2017)
[45] Zhang, D.; Liu, L.; Feng, G., Consensus of heterogeneous linear multi-agent systems subject to aperiodic sampled-data and dos attack, IEEE Trans. Cybern. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.