×

Fast Fourier transforms for spherical Gauss-Laguerre basis functions. (English) Zbl 1453.65467

Pesenson, Isaac (ed.) et al., Frames and other bases in abstract and function spaces. Novel methods in harmonic analysis. Volume 1. Basel: Birkhäuser/Springer. Appl. Numer. Harmon. Anal., 237-263 (2017).
Summary: Spherical Gauss-Laguerre (SGL) basis functions, i.e., normalized functions of the type \( L_{n-l-1}^{(l+1/2)}(r^2)r^lY_{lm}(\vartheta, \varphi)\), \(| m| \leq l < n \in \mathbb{N}\), \( L_{n-l-1}^{(l+1/2)}\) being a generalized Laguerre polynomial, \( Y_{lm}\) a spherical harmonic, constitute an orthonormal basis of the space \( L^2\) on \(\mathbb{R}^{3}\) with Gaussian weight \(\exp(-r^2)\). These basis functions are used extensively, e.g., in biomolecular dynamic simulations. However, to the present, there is no reliable algorithm available to compute the Fourier coefficients of a function with respect to the SGL basis functions in a fast way. This paper presents such generalized FFTs. We start out from an SGL sampling theorem that permits an exact computation of the SGL Fourier expansion of bandlimited functions. By a separation-of-variables approach and the employment of a fast spherical Fourier transform, we then unveil a general class of fast SGL Fourier transforms. All of these algorithms have an asymptotic complexity of \(\mathcal{O}(B^{4})\), \( B\) being the respective bandlimit, while the number of sample points on \(\mathbb{R}^{3}\) scales with \( B^3\). This clearly improves the naive bound of \(\mathcal{O}(B^{7})\). At the same time, our approach results in fast inverse transforms with the same asymptotic complexity as the forward transforms. We demonstrate the practical suitability of our algorithms in a numerical experiment. Notably, this is one of the first performances of generalized FFTs on a non-compact domain. We conclude with a discussion, including the layout of a true \(\mathcal{O}(B^{3}\log^{2}B)\) fast SGL Fourier transform and inverse, and an outlook on future developments.
For the entire collection see [Zbl 1373.42002].

MSC:

65T50 Numerical methods for discrete and fast Fourier transforms
42A32 Trigonometric series of special types (positive coefficients, monotonic coefficients, etc.)

References:

[1] M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. (National Bureau of Standards, Gaithersburg, MD, 1972) · Zbl 0543.33001
[2] L.C. Biedenharn, J.D. Louck, Angular Momentum in Quantum Physics: Theory and Application (Addison-Wesley, Boston, MA, 1981) · Zbl 0474.00023
[3] G.S. Chirikjian, A.B. Kyatkin, Engineering Applications of Noncommutative Harmonic Analysis (CRC, Boca Raton, FL, 2000) · Zbl 1422.42002 · doi:10.1201/9781420041767
[4] C.W. Clenshaw, A note on the summation of Chebyshev series. Math. Comput. 9 (51), 118-120 (1955) · Zbl 0065.05403 · doi:10.1090/S0025-5718-1955-0071856-0
[5] J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19 (90), 297-301 (1965) · Zbl 0127.09002 · doi:10.1090/S0025-5718-1965-0178586-1
[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (MIT, Cambridge, MA, 2001) · Zbl 1047.68161
[7] F. Dai, Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls (Springer, New York, 2013) · Zbl 1275.42001 · doi:10.1007/978-1-4614-6660-4
[8] J.R. Driscoll, D.M. Healy, Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15 (2), 202-250 (1994) · Zbl 0801.65141 · doi:10.1006/aama.1994.1008
[9] J.R. Driscoll, D.M. Healy, D.N. Rockmore, Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput. 26 (4), 1066-1099 (1997) · Zbl 0896.65094 · doi:10.1137/S0097539792240121
[10] D.E. Dudgeon, R.M. Mersereau, Multidimensional Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1984) · Zbl 0643.94001
[11] C.F. Dunkl, Y. Xu, Orthogonal Polynomials of Several Variables (Cambridge University Press, Cambridge, 2001) · Zbl 0964.33001 · doi:10.1017/CBO9780511565717
[12] W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on the Sphere (Oxford Science Publications, Oxford, 1998) · Zbl 0896.65092
[13] W. Gautschi, Numerical Analysis: An Introduction (Birkhäuser, Cambridge, MA, 1997) · Zbl 0877.65001
[14] D.M. Healy, D.N. Rockmore, P.J. Kostelec, S. Moore, FFTs for the 2-sphere – improvements and variations. J. Fourier Anal. Appl. 9 (4), 341-385 (2003) · Zbl 1037.65136 · doi:10.1007/s00041-003-0018-9
[15] A.K. Jain, Fundamentals of Digital Image Processing. (Prentice-Hall, Englewood Cliffs, NJ, 1989) · Zbl 0744.68134
[16] P.J. Kostelec, D.N. Rockmore, FFTs on the rotation group. J. Fourier Anal. Appl. 14 (2), 145-179 (2008) · Zbl 1146.43001 · doi:10.1007/s00041-008-9013-5
[17] S. Kunis, D. Potts, Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161 (1), 75-98 (2003) · Zbl 1033.65123 · doi:10.1016/S0377-0427(03)00546-6
[18] B. Leistedt, J.D. McEwen, Exact wavelets on the ball. IEEE Trans. Signal Process. 60 (12), 6257-6269 (2012) · Zbl 1393.94137 · doi:10.1109/TSP.2012.2215030
[19] O. Maizlish, A. Prymak, Convex polynomial approximation in \(\mathbb{R}^{d\!}\) with Freud weights. J. Approx. Theory 192, 60-68 (2015) · Zbl 1312.41012 · doi:10.1016/j.jat.2014.11.004
[20] J.D. McEwen, Y. Wiaux, A novel sampling theorem on the sphere. IEEE Trans. Signal. Process. 59 (12), 5876-5887 (2011) · Zbl 1393.94696 · doi:10.1109/TSP.2011.2166394
[21] J.D. McEwen, M. Büttner, B. Leistedt, H.V. Peiris, Y. Wiaux, A novel sampling theorem on the rotation group. IEEE Signal Process. Lett. 22 (12), 2425-2429 (2015) · doi:10.1109/LSP.2015.2490676
[22] D. Potts, G. Steidl, M. Tasche, Fast Fourier transforms for nonequispaced data: a tutorial, in Modern Sampling Theory: Mathematics and Applications, ed. by J.J. Benedetto, P.J.S.G. Ferreira (Birkhäuser, Boston, MA, 2001), pp. 247-270
[23] D. Potts, J. Prestin, A. Vollrath, A fast algorithm for nonequispaced Fourier transforms on the rotation group. Numer. Algorithms 52 (3), 355-384 (2009) · Zbl 1179.65167 · doi:10.1007/s11075-009-9277-0
[24] D.W. Ritchie, High-order analytic translation matrix elements for real-space six-dimensional polar Fourier correlations. J. Appl. Cryst 38 (5), 808-818 (2005) · doi:10.1107/S002188980502474X
[25] D.W. Ritchie, G.J.L. Kemp, Protein docking using spherical polar Fourier correlations. Proteins 39 (2), 178-194 (2000) · doi:10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6
[26] N.M. Steen, G.D. Byrne, E.M. Gelbard, Gaussian quadratures for the integrals ∫_0^∞​exp(−x^2)f(x)dx and ∫_0^b​exp(−x^2)f(x)dx. Math. Comput. 23 (107), 661-671 (1969) · Zbl 0187.12902
[27] G. Steidl, M. Tasche, A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms. Math. Comput. 56 (193), 281-296 (1991) · Zbl 0725.65145 · doi:10.1090/S0025-5718-1991-1052103-1
[28] G. Szegő, Orthogonal Polynomials (Addison-Wesley, Boston, MA, 1981) · JFM 65.0278.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.