×

The Terwilliger algebra of the twisted Grassmann graph: the thin case. (English) Zbl 1451.05252

Summary: The Terwilliger algebra \(T(x)\) of a finite connected simple graph \(\Gamma\) with respect to a vertex \(x\) is the complex semisimple matrix algebra generated by the adjacency matrix \(A\) of \(\Gamma\) and the diagonal matrices \(E_i^\ast(x)=\operatorname{diag}(v_i)\) (\(i=0,1,2,\dots\)), where \(v_i\) denotes the characteristic vector of the set of vertices at distance \(i\) from \(x\). The twisted Grassmann graph \(\tilde{J}_q(2D+1,D)\) discovered by E. R. van Dam and J. H. Koolen in [Invent. Math. 162, No. 1, 189–193 (2005; Zbl 1074.05092)] has two orbits of the automorphism group on its vertex set, and it is known that one of the orbits has the property that \(T(x)\) is thin whenever \(x\) is chosen from it, i.e., every irreducible \(T(x)\)-module \(W\) satisfies \(\dim E_i^\ast (x)W\leqslant 1\) for all \(i\). In this paper, we determine all the irreducible \(T(x)\)-modules of \(\tilde{J}_q(2D+1,D)\) for this “thin” case.

MSC:

05E30 Association schemes, strongly regular graphs
16S50 Endomorphism rings; matrix rings

Citations:

Zbl 1074.05092

References:

[1] S. Bang, T. Fujisaki, and J. H. Koolen. The spectra of the local graphs of the twisted Grassmann graphs.European J. Combin.30 (2009), 638-654. · Zbl 1172.05333
[2] E. Bannai and T. Ito.Algebraic Combinatorics I: Association Schemes.Benjamin/Cummings, Menlo Park, CA, 1984. · Zbl 0555.05019
[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier.Distance-Regular Graphs. SpringerVerlag, Berlin, 1989. · Zbl 0747.05073
[4] J. S. Caughman, IV. The Terwilliger algebras of bipartiteP- andQ-polynomial schemes.Discrete Math.196 (1999), 65-95. · Zbl 0924.05067
[5] E. R. van Dam and J. H. Koolen. A new family of distance-regular graphs with unbounded diameter.Invent. Math.162 (2005), 189-193. · Zbl 1074.05092
[6] E. R. van Dam, J. H. Koolen, and H. Tanaka. Distance-regular graphs.Electron. J. Combin.(2016), #DS22.arXiv:1410.6294. · Zbl 1335.05062
[7] C. F. Dunkl. An addition theorem for someq-Hahn polynomials.Monatsh. Math. 85 (1978), 5-7. · Zbl 0345.33010
[8] T. Fujisaki, J. H. Koolen, and M. Tagami. Some properties of the twisted Grassmann graphs.Innov. Incidence Geom.3 (2006), 81-87. · Zbl 1111.05099
[9] C. D. Godsil.Algebraic Combinatorics. Chapman & Hall, New York, 1993. · Zbl 0784.05001
[10] X. Liang, T. Ito, and Y. Watanabe. The Terwilliger algebra of the Grassmann scheme Jq(N, D) revisited from the viewpoint of the quantum affine algebraUq(slb2).Linear Algebra Appl.596 (2020), 117-144. · Zbl 1435.05239
[11] B. Lv, L.-P. Huang, and K. Wang. Endomorphisms of twisted Grassmann graphs. Graphs Combin.33 (2017), 157-169. · Zbl 1365.05145
[12] A. Munemasa. Godsil-McKay switching and twisted Grassmann graphs.Des. Codes Cryptogr.84 (2017), 173-179.arXiv:1512.09232. · Zbl 1367.05026
[13] A. Munemasa and V. D. Tonchev. The twisted Grassmann graph is the block graph of a design.Innov. Incidence Geom.12 (2011), 1-6.arXiv:0906.4509. · Zbl 1293.05020
[14] A. A. Pascasio. On the multiplicities of the primitive idempotents of aQ-polynomial distance-regular graph.European J. Combin.23 (2002), 1073-1078. · Zbl 1017.05107
[15] M. Srinivasan. The Goldman-Rota identity and the Grassmann scheme.Electron. J. Combin.21 (2014), #P1.37. · Zbl 1300.05324
[16] H. Tanaka. Vertex subsets with minimal width and dual width inQ-polynomial distance-regular graphs.Electron. J. Combin.18 (2011), #P167.arXiv:1011.2000. · Zbl 1235.05160
[17] H. Tanaka. The Erd˝os-Ko-Rado theorem for twisted Grassmann graphs.Combinatorica32 (2012), 735-740.arXiv:1012.5692. · Zbl 1299.05313
[18] H. Tanaka, R. Tanaka, and Y. Watanabe. The Terwilliger algebra of aQ-polynomial distance-regular graph with respect to a set of vertices. In preparation.
[19] P. Terwilliger. The incidence algebra of a uniform poset. In: D. Ray-Chaudhuri (ed.),Coding theory and design theory, Part I, Springer-Verlag, New York, 1990, pp. 193-212. · Zbl 0737.05032
[20] P. Terwilliger. The subconstituent algebra of an association scheme I.J. Algebraic Combin.1 (1992), 363-388. · Zbl 0785.05089
[21] P. Terwilliger. The subconstituent algebra of an association scheme II.J. Algebraic Combin.2 (1993), 73-103. · Zbl 0785.05090
[22] P. Terwilliger. The subconstituent algebra of an association scheme III.J. Algebraic Combin.2 (1993), 177-210. · Zbl 0785.05091
[23] P. Terwilliger.The subconstituent algebra of a graph, the thin condition, and the Q-polynomial property. Lecture notes, 1993.
[24] P. Terwilliger. Leonard pairs and theq-Racah polynomials.Linear Algebra Appl.387 (2004), 235-276.arXiv:math/0306301. · Zbl 1075.05090
[25] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array.Des. Codes Cryptogr.34 (2005), 307-332.arXiv:math/0306291. · Zbl 1063.05138
[26] Y. Watanabe.An algebraic study of association schemes and its applications. master thesis, Tohoku University, 2015. Available athttps://researchmap.jp/ yutawatanabe/.
[27] Y.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.