×

Quaternion generalization of super-Poincaré group. (English) Zbl 1450.83006

Summary: Super-Poincaré algebra in \(D = 6\) space-time dimensions has been studied in terms of quaternionic representation of Lorentz group. Starting the connection of quaternion Lorentz group with \(\mathrm{SO}(1, 5)\) group, the \(\mathrm{SL}(2, \mathbb H)\) spinors for Dirac and Weyl representations of Poincaré group are described consistently to extend the Poincaré algebra to super-Poincaré algebra for \(D = 6\) space-time.

MSC:

83E50 Supergravity
83A05 Special relativity
81T60 Supersymmetric field theories in quantum mechanics
22E15 General properties and structure of real Lie groups
11R52 Quaternion and other division algebras: arithmetic, zeta functions
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
Full Text: DOI

References:

[1] Arkani-Hamed, N., Dimopoulos, S. and Dvali, G., Phys. Lett. B429, 263 (1998). · Zbl 1355.81103
[2] Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S. and Dvali, G., Phys. Lett. B436, 257 (1998).
[3] Randall, L. and Sundrum, R., Phys. Rev. Lett.83, 3370 (1999). · Zbl 0946.81063
[4] Haag, R., Lopuzanski, J. T. and Sohnius, M. F., Nucl. Phys. B88, 257 (1975).
[5] Sohnius, M. F., Phys. Rep.128, 39 (1985).
[6] Peskin, M. E. and Schroeder, D. V., An Introduction to Quantum Field Theories (Addison-Wesley, 1995).
[7] Delamotte, B., Amer. J. Phys.72, 170 (2004).
[8] G. ’t Hooft, The glorious days of physics: Renormalization of gauge theories, arXiv:hep-th/98122203.
[9] Müller-Kirsten, H. J. W. and Wiedemann, A., Supersymmetry (World Scientific, 1987). · Zbl 0941.81597
[10] Hawking, S., The Grand Design (Bantam Books, 2010).
[11] Greene, B., The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (W.W. Nortan, 1999). · Zbl 0949.83001
[12] Baez, J. C. and Huerta, J., Superstrings, Geometry, Topology, and \((C^\ast)\)-Algebras, in , Vol. 81, eds. Doran, R., Friedman, G. and Rosenberg, J. (AMS, Providence, 2010), p. 65.
[13] Kugo, T. and Townsend, P., Nucl. Phys. B221, 357 (1983).
[14] Lukierski, J. and Nowicki, A., Ann. Phys.166, 164 (1986). · Zbl 0589.17008
[15] Lukierski, J. and Toppan, F., Phys. Lett. B539, 266 (2002). · Zbl 0996.17002
[16] Toppan, F., J. High Energy Phys.09, 016 (2004).
[17] Rawat, S. and Negi, O. P. S., Int. J. Theor. Phys.48, 305 (2009). · Zbl 1162.81378
[18] Rawat, S. and Negi, O. P. S., Int. J. Theor. Phys.48, 2222 (2009). · Zbl 1171.81373
[19] Negi, O. P. S. and Dehnen, H., Int. J. Theor. Phys.50, 2446 (2011). · Zbl 1227.78005
[20] H. Dehnen and O. P. S. Negi, Electromagnetic duality, quaternion and supersymmetric gauge theories of dyons, arXiv:hep-th/0608164.
[21] Bisht, P. S., Li, T., Pushpa and Negi, O. P. S., Int. J. Theor. Phys.49, 1370 (2010). · Zbl 1194.81275
[22] Pushpa, Bisht, P. S., Li, T. and Negi, O. P. S., Int. J. Theor. Phys.51, 3741 (2012). · Zbl 1260.81310
[23] Brink, L., Schwarz, J. H. and Scherk, J., Nucl. Phys. B121, 77 (1977).
[24] Hurwitz, A., Math. Ann.88, 1 (1923).
[25] Dickson, L. E., Ann. Math.20, 155 (1919). · JFM 47.0099.01
[26] Hamilton, W. R., Elements of Quaternions (Chelsea Publications Co., New York, 1969).
[27] Tait, P. G., An Elementary Treatise on Quaternions (Oxford University Press, 1875). · JFM 06.0229.01
[28] Baez, J. C., Bull. Amer. Math. Soc.39, 145 (2002).
[29] Dixon, G. M., Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics (Springer-Science+Business Media, 1994). · Zbl 0807.15024
[30] Okubo, S., Introduction to Octonion and Other Non-associate Algebras in Physics (Cambridge University Press, 1995). · Zbl 0841.17001
[31] Cederwall, M. and Preitschopf, C. R., Nucl. Phys. B40, 238 (1993).
[32] Evans, J. M., Nucl. Phys. B298, 92 (1988).
[33] Gilmore, R., Lie Groups, Lie Algebras and Some of Their Applications (John Wiley & Sons, 1974). · Zbl 0279.22001
[34] Bisht, P. S., Negi, O. P. S. and Rajput, B. S., Prog. Theor. Phys.85, 157 (1991).
[35] Morita, K., Prog. Theor. Phys.117, 501 (2007). · Zbl 1122.81045
[36] Dahm, R., Adv. Appl. Clifford Algebr.7, 337 (1996).
[37] Carmeli, M., Group Theory and General Relativity (McGraw-Hill, 1977). · Zbl 0339.53011
[38] da Rocha, R., Int. J. Geom. Methods Mod. Phys.4, 547 (2007). · Zbl 1151.15028
[39] da Rocha, R., Int. J. Geom. Methods Mod. Phys.7, 821 (2010).
[40] Hamermesh, M., Group Theory and Its Application to Physics (Addison-Wesley, 1962). · Zbl 0151.34101
[41] Ryder, L. H., Quantum Field Theory (Cambridge University Press, 1985). · Zbl 0555.46038
[42] S. Okubo, Representations of Clifford algebras and its applications, arXiv:hep-th/9408165v1. · Zbl 0820.15019
[43] Halzen, F. and Martin, A. D., Quarks and Leptons (John Wiley & Sons, 1984).
[44] S. P. Martin, A supersymmetry primer, arXiv:hep-ph/9709356. · Zbl 1106.81320
[45] Rodrigues, W. A. Jr., da Rocha, R. and Vaz, J. Jr., Int. J. Geom. Methods Mod. Phys.2, 305 (2005). · Zbl 1079.81034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.