×

A construction of patterns with many critical points on topological tori. (English) Zbl 1450.35059

Summary: We consider reaction-diffusion equations on closed surfaces in \(\mathbb{R}^3\) having genus 1. Stable nonconstant stationary solutions are often called patterns. The purpose of this paper is to construct closed surfaces together with patterns having as many critical points as one wants.

MSC:

35B36 Pattern formations in context of PDEs
35B35 Stability in context of PDEs
35K57 Reaction-diffusion equations
35K58 Semilinear parabolic equations
35J61 Semilinear elliptic equations
35P15 Estimates of eigenvalues in context of PDEs
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
35B20 Perturbations in context of PDEs
35R01 PDEs on manifolds

References:

[1] Bandle, C.; Punzo, F.; Tesei, A., Existence and nonexistence of patterns on Riemannian manifolds, J. Math. Anal. Appl., 387, 33-47 (2012) · Zbl 1245.58010 · doi:10.1016/j.jmaa.2011.08.060
[2] Below, JV; Lubary, JA, Instability of stationary solutions of reaction-diffusion-equations on graphs, Results Math., 68, 171-201 (2015) · Zbl 1332.35373 · doi:10.1007/s00025-014-0429-8
[3] Deimling, K., Nonlinear Functional Analysis (2010), New York: Dover, New York · Zbl 1257.47059
[4] do Carmo, MP, Differential Geometry of Curves and Surfaces (2016), New York: Dover, New York · Zbl 1352.53002
[5] Farina, A.; Sire, Y.; Valdinoci, E., Stable solutions of elliptic equations on Riemannian manifolds, J. Geom. Anal., 23, 1158-1172 (2013) · Zbl 1273.53029 · doi:10.1007/s12220-011-9278-9
[6] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order (1983), New York: Springer, New York · Zbl 0562.35001
[7] Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981) · Zbl 0456.35001
[8] Jimbo, S., On a semilinear diffusion equation on a Riemannian manifold and its stable equilbrium solutions, Proc. Jpn. Acad. Ser. A, 60, 349-352 (1984) · Zbl 0565.35054 · doi:10.3792/pjaa.60.349
[9] Matano, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. RIMS Kyoto Univ., 15, 401-454 (1979) · Zbl 0445.35063 · doi:10.2977/prims/1195188180
[10] Nascimento, AS; Gonçalves, AC, Instability of elliptic equations on compact Riemannian manifolds with non-negative Ricci curvature, Electron. J. Differ. Equ., 67, 1-18 (2010) · Zbl 1187.35036
[11] Nirenberg, L.: Topics in nonlinear functional analysis. Revised reprint of the: original. Courant Lecture Notes in Mathematics, vol. 6. American Mathematical Society, Providence, RI (1974) · Zbl 0286.47037
[12] Punzo, F., The existence of patterns on surfaces of revolution without boundary, Nonlinear Anal., 77, 94-102 (2013) · Zbl 1255.35040 · doi:10.1016/j.na.2012.09.003
[13] Rubinstein, J.; Wolansky, G., Instability results for reaction-diffusion equations over surfaces of revolutions, J. Math. Anal. Appl., 187, 485-489 (1994) · Zbl 0810.35036 · doi:10.1006/jmaa.1994.1368
[14] Sonego, M., Stability result of a reaction-diffusion problem with mixed boundary conditions and applications to some symmetric cases, J. Math. Anal. Appl., 466, 1190-1210 (2018) · Zbl 1394.35244 · doi:10.1016/j.jmaa.2018.06.027
[15] Yanagida, E., Stability of stationary distributions in a space-dependent population growth process, J. Math. Biol., 15, 37-50 (1982) · Zbl 0505.92017 · doi:10.1007/BF00275787
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.