×

Alternating-direction implicit finite difference methods for a new two-dimensional two-sided space-fractional diffusion equation. (English) Zbl 1448.65125

Summary: According to the principle of conservation of mass and the fractional Fick’s law, a new two-sided space-fractional diffusion equation was obtained. In this paper, we present two accurate and efficient numerical methods to solve this equation. First we discuss the alternating-direction finite difference method with an implicit Euler method (ADI-implicit Euler method) to obtain an unconditionally stable first-order accurate finite difference method. Second, the other numerical method combines the ADI with a Crank-Nicolson method (ADI-CN method) and a Richardson extrapolation to obtain an unconditionally stable second-order accurate finite difference method. Finally, numerical solutions of two examples demonstrate the effectiveness of the theoretical analysis.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] Chen, S., Liu, F., Jiang, X., Turner, I., Anh, V.: A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients. Appl. Math. Comput. 257, 591-601 (2015) · Zbl 1339.65104
[2] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[3] Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012) · Zbl 1247.60003
[4] Liu, F., Meerschaert, M.M., Mcgough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9-25 (2013) · Zbl 1312.65138 · doi:10.2478/s13540-013-0002-2
[5] Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787-805 (2015) · Zbl 1352.65238 · doi:10.1016/j.jcp.2014.10.053
[6] Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.: A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252-263 (2015) · Zbl 1349.65316 · doi:10.1016/j.jcp.2014.06.001
[7] Liu, T.H., Hou, M.Z.: A fast implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. Adv. Math. Phys. 2017, Article ID 8716752 (2017) · Zbl 1448.76109
[8] Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time spectral method for the time fractional Fokker-Planck equation. SIAM J. Sci. Comput. 37(2), 701-724 (2015) · Zbl 1320.82052 · doi:10.1137/140980545
[9] Guo, B., Xu, Q., Zhu, A.: A second-order finite difference method for two-dimensional fractional percolation equations. Commun. Comput. Phys. 19(3), 733-757 (2016) · Zbl 1388.65053 · doi:10.4208/cicp.011214.140715a
[10] Yin, X., Li, L., Fang, S.: Second-order accurate numerical approximations for the fractional percolation equations. J. Nonlinear Sci. Appl. 10(8), 4122-4136 (2017) · Zbl 1412.65097 · doi:10.22436/jnsa.010.08.08
[11] Tadjeran, C., Meerschaert, M.M.: A second order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813-823 (2007) · Zbl 1113.65124 · doi:10.1016/j.jcp.2006.05.030
[12] Chen, H., Lv, W., Zhang, T.: A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 360, 1-14 (2018) · Zbl 1395.65007 · doi:10.1016/j.jcp.2018.01.034
[13] Chen, M., Deng, W.: A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Appl. Math. Model. 38(13), 3244-3259 (2014) · Zbl 1427.65149 · doi:10.1016/j.apm.2013.11.043
[14] Liu, F., Chen, S., Turner, T., Burrage, K., Anh, V.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 11(10), 1221-1232 (2013)
[15] Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52(6), 2599-2622 (2014) · Zbl 1382.65349 · doi:10.1137/130934192
[16] Feng, L., Zhuang, P., Liu, F., Turner, I., Yang, Q.: Second-order approximation for the space fractional diffusion equation with variable coefficient. Prog. Fract. Differ. Appl. 1(1), 23-35 (2015)
[17] Moroney, T., Yang, Q.: Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast Poisson preconditioners. J. Comput. Phys. 246(246), 304-317 (2013) · Zbl 1349.65398 · doi:10.1016/j.jcp.2013.03.029
[18] Chen, S., Liu, F., Jiang, X., Turner, I., Burrage, K.: Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients. SIAM J. Numer. Anal. 54(2), 606-624 (2016) · Zbl 1382.65290 · doi:10.1137/15M1019301
[19] Feng, L.B., Zhuang, P., Liu, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257, 591-601 (2015) · Zbl 1339.65144
[20] Feng, L.B., Zhuang, P., Liu, F., Turner, I., Anh, V., Li, J.: A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients. Comput. Math. Appl. 73, 1155-1171 (2017) · Zbl 1412.65072 · doi:10.1016/j.camwa.2016.06.007
[21] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[22] Tadjeran, C., Meerschaert, M.M., Scheffler, P.: A second order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[23] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon Breach, London (1993) · Zbl 0818.26003
[24] Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249-261 (2006) · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[25] Chen, S., Liu, F., Turner, I., Anh, V.: An implicit numerical method for the two-dimensional variable-order fractional percolation equation. Appl. Math. Comput. 219, 4322-4331 (2013) · Zbl 1432.65118
[26] Hentenryck, P., Bent, R., Upfal, E.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.