×

On a damped Szegö equation (with an appendix in collaboration with Christian Klein). (English) Zbl 1448.35022

Summary: We investigate how damping the lowest Fourier mode modifies the dynamics of the cubic Szegö equation. We show that there is a nonempty open subset of initial data generating trajectories with high Sobolev norms tending to infinity. In addition, we give a complete picture of this phenomenon on a reduced phase space of dimension 6. An appendix is devoted to numerical simulations supporting the generalization of this picture to more general initial data.

MSC:

35B15 Almost and pseudo-almost periodic solutions to PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems

References:

[1] J. Bourgain, Problems in Hamiltonian PDEs, Geom. Funct. Anal. (2000), Special Volume, Part I, pp. 32-56. · Zbl 1050.35016
[2] J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Not., 1996, no. 6, pp. 277-304. · Zbl 0934.35166
[3] R. Carles and I. Gallagher, Universal dynamics for the defocusing logarithmic Schrödinger equation, Duke Math. J., 167 (2018), pp. 1761-1801. · Zbl 1394.35467
[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), pp. 39-113. · Zbl 1197.35265
[5] P. Gérard and S. Grellier, The cubic Szegö equation, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), pp. 761-810. · Zbl 1228.35225
[6] P. Gérard and S. Grellier, Invariant tori for the cubic Szegö equation, Invent. Math., 187 (2012), pp. 707-754. · Zbl 1252.35026
[7] P. Gérard and S. Grellier, The cubic Szegö equation and Hankel operators, Astérisque 389, 2017. · Zbl 1410.37001
[8] P. Gérard and S. Grellier, Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDE, 5 (2012), pp. 1139-1155. · Zbl 1268.35013
[9] P. Gérard, Wave turbulence and complete integrability, in Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Fields Institute Communications 83, P. D. Miller, P. Perry, J.-C. Saut, C. Sulem, eds., Springer, New York, pp. 39-93. · Zbl 1442.35419
[10] P. Gérard and S. Grellier, A survey of the Szegö equation, Sci. China Math., 62 (2019), pp. 1087-1100. · Zbl 1428.35067
[11] P. Gérard and A. Pushnitski, Weighted model spaces and Schmidt subspaces of Hankel operators, J. Lond. Math. Soc. (2), https://doi.org/10.1112/jlms.12270. · Zbl 1448.47040
[12] P. Gérard, E. Lenzmann, O. Pocovnicu, and P. Raphael, A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line, Ann. PDE, 4 (2018), https://doi.org/10.1007/s40818-017-0043-7. · Zbl 1397.35062
[13] M. Guardia, Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential, Commun. Math. Phys., 329 (2014), pp. 405-434. · Zbl 1296.35169
[14] M. Guardia, Z. Hani, E. Haus, A. Maspero, and M. Procesi, Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite-gap tori for the 2D cubic NLS equation, J. Eur. Math. Soc. (JEMS), to appear. · Zbl 1427.35254
[15] M. Guardia, E. Haus, and M. Procesi, Growth of Sobolev norms for the defocusing analytic NLS on \(\T^2\), Adv. Math., 301 (2016), pp. 615-692. · Zbl 1353.35260
[16] M. Guardia and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), pp. 71-149. · Zbl 1311.35284
[17] Z. Hani, Long-time strong instability and unbounded orbits for some periodic nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 211 (2014), pp. 929-964. · Zbl 1293.35298
[18] Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia, Modified scattering for the cubic Schrödinger equations on product spaces and applications, Forum Math. Pi, Vol. 3 (2015), https://doi.org/10.1017/fmp.2015.5. · Zbl 1326.35348
[19] E. Haus and M. Procesi, Growth of Sobolev norms for the quintic NLS on \(\T^2\), Anal. PDE, 8 (2015), pp. 883-922. · Zbl 1322.35126
[20] V. V. Peller, Hankel Operators and Their Applications, Springer Monogr. Math., Springer-Verlag, New York, 2003. · Zbl 1030.47002
[21] O. Pocovnicu, Explicit formula for the solution of the Szegö equation on the real line and applications, Discrete Contin. Dyn. Syst., 31 (2011), pp. 607-649. · Zbl 1235.35263
[22] J. Thirouin, Optimal bounds for the growth of Sobolev norms of solutions of a quadratic Szegö equation, Trans. Amer. Math. Soc., 371 (2019), pp. 3673-3690. · Zbl 1409.37071
[23] H. Xu, Large time blow up for a perturbation of the cubic Szegö equation, Anal. PDE, 7 (2014), pp. 717-731. · Zbl 1302.37042
[24] H. Xu, Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z., 286 (2017), pp. 443-489. · Zbl 1367.35159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.