×

Analytic properties of combinatorial triangles related to Motzkin numbers. (English) Zbl 1448.05214

Summary: The Motzkin numbers count the number of lattice paths which go from \((0,0)\) to \((n,0)\) using steps \((1,1),(1,0)\) and \((1,-1)\) and never go below the \(x\)-axis. Let \(M_{n,k}\) be the number of such paths with exactly \(k\) horizontal steps. We investigate the analytic properties of various combinatorial triangles related to the Motzkin triangle \([M_{n,k}]_{n,k\geq 0}\), including their total positivity, the real-rootedness and interlacing property of the generating functions of their rows, and the asymptotic normality (by central and local limit theorems) of these triangles. We also prove several identities related to these triangles.

MSC:

05E10 Combinatorial aspects of representation theory

Software:

OEIS
Full Text: DOI

References:

[1] Aigner, M., Motzkin numbers, European J. Combin., 19, 663-675 (1998) · Zbl 0915.05004
[2] Bender, E. A., Central and local limit theorems applied to asymptotic enumeration, J. Combin. Theory Ser. A, 15, 91-111 (1973) · Zbl 0242.05006
[3] Bonin, J.; Shapiro, L.; Simion, R., Some \(q\)-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths, J. Statist. Plann. Inference, 34, 35-55 (1993) · Zbl 0783.05008
[4] Brenti, F., Combinatorics and total positivity, J. Combin. Theory Ser. A, 71, 175-218 (1995) · Zbl 0851.05095
[5] Brenti, F., The applications of total positivity to combinatorics, and conversely, (Total Positivity and Its Applications, Jaca, 1994. Total Positivity and Its Applications, Jaca, 1994, Math. Appl., vol. 359 (1996), Kluwer: Kluwer Dordrecht), 451-473 · Zbl 0895.05001
[6] Canfield, E. R., Asymptotic normality in enumeration, (Handbook of Enumerative Combinatorics. Handbook of Enumerative Combinatorics, Discrete Math. Appl. (Boca Raton) (2015), CRC Press: CRC Press Boca Raton, FL), 255-280 · Zbl 1351.05024
[7] Carlitz, L.; Kurtz, D. C.; Scoville, R.; Stackelberg, O. P., Asymptotic properties of Eulerian numbers, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 23, 47-54 (1972) · Zbl 0226.60049
[8] Chen, X.; Liang, H.; Wang, Y., Total positivity of recursive matrices, Linear Algebra Appl., 471, 383-393 (2015) · Zbl 1307.05020
[9] Chen, X.; Liang, H.; Wang, Y., Total positivity of Riordan arrays, European J. Combin., 46, 68-74 (2015) · Zbl 1307.05010
[10] X. Chen, J. Mao, Y. Wang, Asymptotic normality in \(t\)-stack sortable permutations, preprint. · Zbl 1455.05001
[11] Chen, Z.; Pan, H., Notes on the \(q\)-colored motzkin numbers and Schröder numbers, J. Difference Equ. Appl., 23, 1133-1141 (2017) · Zbl 1371.05010
[12] Chen, W. Y.C.; Ren, A. X.Y.; Yang, A. L.B., Proof of a positivity conjecture on Schur functions, J. Combin. Theory Ser. A, 120, 644-648 (2013) · Zbl 1259.05184
[13] Chen, X.; Wang, Y., Notes on the total positivity of Riordan arrays, Linear Algebra Appl., 569, 156-161 (2019) · Zbl 1411.05030
[14] Cheon, G.-S.; Kim, H.; Shapiro, L. W., Combinatorics of Riordan arrays with identical \(A\) and \(Z\) sequences, Discrete Math., 312, 2040-2049 (2012) · Zbl 1243.05007
[15] Donaghey, R.; Shapiro, L. W., Motzkin numbers, J. Combin. Theory Ser. A, 23, 291-301 (1977) · Zbl 0417.05007
[16] Došlić, T.; Veljan, D., Logarithmic behavior of some combinatorial sequences, Discrete Math., 308, 2182-2212 (2008) · Zbl 1147.05012
[17] Eu, S.-P.; Fu, T.-S.; Hou, J.-T.; Hsu, T.-W., Standard Young tableaux and colored motzkin paths, J. Combin. Theory Ser. A, 120, 1786-1803 (2013) · Zbl 1314.05220
[18] Feller, W., The fundamental limit theorems in probability, Bull. Amer. Math. Soc., 51, 800-832 (1945) · Zbl 0060.28702
[19] Foata, D.; Zeilberger, D., A classic proof of a recurrence for a very classical sequence, J. Combin. Theory Ser. A, 80, 380-384 (1997) · Zbl 0883.05007
[20] Harper, L. H., Stirling behavior is asymptotically normal, Ann. Math. Stat., 38, 410-414 (1967) · Zbl 0154.43703
[21] He, T.-X., \(A\)-Sequences, \(Z\)-sequence, and \(B\)-sequences of Riordan matrices, Discrete Math., 343, Article 111718 pp. (2020), 18pp · Zbl 1431.05007
[22] Hwang, H.-K.; Chern, H.-H.; Duh, G.-H., An asymptotic distribution theory for Eulerian recurrences with applications, Adv. Appl. Math., 112, Article 101960 pp. (2020) · Zbl 1440.05026
[23] Karlin, S., Total Positivity, Vol. 1 (1968), Stanford University Press · Zbl 0219.47030
[24] Liu, L. L.; Wang, Y., A unified approach to polynomial sequences with only real zeros. A unified approach to polynomial sequences with only real zeros, Adv. Appl. Math., 38, 542-560 (2007) · Zbl 1123.05009
[25] Pinkus, A., Totally Positive Matries (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1185.15028
[26] Shapiro, L. W.; Getu, S.; Woan, W.-J.; Woodson, L. C., The Riordan group, Discrete Appl. Math., 34, 229-239 (1991) · Zbl 0754.05010
[27] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org. · Zbl 1044.11108
[28] Stanley, R. P., Enumerative Combinatorics, Vol. 2 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0928.05001
[29] Sulanke, R. A., Bijective recurrences for Motzkin paths, Adv. Appl. Math., 27, 627-640 (2001) · Zbl 0992.05015
[30] Sulanke, R. A., The Narayana distribution, J. Statist. Plann. Inference, 101, 311-326 (2002) · Zbl 1001.05009
[31] Sun, Z.-W., Congruences involving generalized central trinomial coefficients, Sci. China Math., 57, 1375-1400 (2014) · Zbl 1339.11026
[32] Wang, Y.; Yang, A. L.B., Total positivity of Narayana matrices, Discrete Math., 341, 1264-1269 (2018) · Zbl 1383.05026
[33] Wang, Y.; Zhang, Z.-H., Combinatorics of generalized Motzkin numbers, J. Integer Seq., 18, Article 15.2.4 pp. (2015) · Zbl 1310.05015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.