×

Maximum cut parameterized by crossing number. (English) Zbl 1447.05194

Summary: Given an edge-weighted graph \(G\) on \(n\) nodes, the NP-hard Max-Cut problem asks for a node bipartition such that the sum of edge weights joining the different partitions is maximized. We propose a fixed-parameter tractable algorithm parameterized by the number \(k\) of crossings in a given drawing of \(G\). Our algorithm achieves a running time of \(O(2^k \cdot p(n+k))\), where \(p\) is the polynomial running time for planar Max-Cut. The only previously known similar algorithm [C. Dahn et al., Lect. Notes Comput. Sci. 10979, 141–152 (2018; Zbl 1511.68200)] is restricted to embedded 1-planar graphs (i.e., at most one crossing per edge) and its dependency on \(k\) is of order \(3^k\). Finally, combining this with the fact that crossing number is fixed-parameter tractable with respect to itself, we see that Max-Cut is fixed-parameter tractable with respect to the crossing number, even without a given drawing. Moreover, the results naturally carry over to the minor-monotone-version of crossing number.

MSC:

05C85 Graph algorithms (graph-theoretic aspects)
05C22 Signed and weighted graphs
05C30 Enumeration in graph theory
05C62 Graph representations (geometric and intersection representations, etc.)
68Q25 Analysis of algorithms and problem complexity

Citations:

Zbl 1511.68200

References:

[1] F. Barahona. On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 15(10):3241, 1982.
[2] F. Barahona.The Max-Cut problem on graphs not contractible to K5.Operations Research Letters, 2(3):107-111, 1983. · Zbl 0525.90094 · doi:10.1016/
[3] F. Barahona, M. Gr¨otschel, M. J¨unger, and G. Reinelt. An application of combinatorial optimization to statistical physics and circuit layout design. Operations Research, 36(3):493-513, 1988. · Zbl 0646.90084 · doi:10.1287/opre.36.3.493
[4] H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M. Thilikos. (Meta) Kernelization.Journal of the ACM, 63(5):44:1- 44:69, 2016. · Zbl 1425.68137 · doi:10.1145/2973749
[5] J. Chen, I. A. Kanj, L. Perkovic, E. Sedgwick, and G. Xia.Genus characterizes the complexity of certain graph problems: Some tight results.Journal of Computer and System Sciences, 73(6):892-907, 2007. · Zbl 1121.68086 · doi:10.1016/j.jcss.2006.11.001
[6] M. Chimani, C. Dahn, M. Juhnke-Kubitzke, N. M. Kriege, P. Mutzel, and A. Nover. Maximum cut parameterized by crossing number.CoRR, abs/1903.06061, 2019. URL:
[7] M. Chimani, P. Kindermann, F. Montecchiani, and P. Valtr.Crossing numbers of beyond-planar graphs. InGraph Drawing and Network Visualization - 27th International Symposium, GD 2019, pages 78-86, 2019. · Zbl 07266107 · doi:10.1007/978-3-030-35802-0_6
[8] C. Dahn, N. M. Kriege, and P. Mutzel.A fixed-parameter algorithm for the Max-Cut problem on embedded 1-planar graphs.In C. S. Iliopoulos, H. W. Leong, and W. Sung, editors,Combinatorial Algorithms - 29th International Workshop, IWOCA 2018, volume 10979 ofLecture Notes in Computer Science, pages 141-152. Springer, 2018. · Zbl 1511.68200 · doi:10.1007/
[9] C. De Simone, M. Diehl, M. J¨unger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm.Journal of Statistical Physics, 80(1-2):487-496, 1995. · Zbl 1106.82323 · doi:10.1007/BF02178370
[10] M. Deza and M. Laurent. Applications of cut polyhedra I.J. Comput. Appl. Math., 55(2):191-216, 1994. · Zbl 0826.52012 · doi:10.1016/0377-0427(94)90020-5
[11] M. Deza and M. Laurent. Applications of cut polyhedra II.J. Comput. Appl. Math., 55(2):217-247, 1994. · Zbl 0826.52013 · doi:10.1016/0377-0427(94)90021-3
[12] J. A. Ellis, H. Fan, and M. R. Fellows. The dominating set problem is fixed parameter tractable for graphs of bounded genus.Journal of Algorithms, 52(2):152-168, 2004. · Zbl 1072.68079 · doi:10.1016/j.jalgor.2004.02.001
[13] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Bidimensionality and EPTAS. In D. Randall, editor,Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages 748-759. SIAM, 2011. · Zbl 1377.68324 · doi:10.1137/1.9781611973082.59
[14] A. Galluccio and M. Loebl. On the theory of Pfaffian orientations. II. T-joins,k-cuts, and duality of enumeration.Electronic Journal of Combinatorics, 6, 1998. · Zbl 0909.05006
[15] A. Galluccio, M. Loebl, and J. Vondrak. Optimization via enumeration: a new algorithm for the max cut problem.Mathematical Programming, 90:273-290, 2001. · Zbl 0989.90127 · doi:10.1007/PL00011425
[16] M. R. Garey and D. S. Johnson. Crossing number is NP-complete.SIAM Journal on Algebraic Discrete Methods, 4(3):312-316, 1983. · Zbl 0536.05016 · doi:10.1137/
[17] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming.Journal of the ACM, 42(6):1115-1145, 1995. · Zbl 0885.68088 · doi:10.1145/227683.
[18] M. Grohe. Computing crossing numbers in quadratic time.Journal of Computer and System Sciences, 68(2):285-302, 2004. · Zbl 1073.68064 · doi:10.1016/j.jcss.
[19] M. Gr¨otschel and W. R. Pulleyblank. Weakly bipartite graphs and the Max-Cut problem.Operations Research Letters, 1(1):23-27, 1981. · Zbl 0494.90078
[20] M. Gr¨otschel and G. L. Nemhauser. A polynomial algorithm for the MaxCut problem on graphs without long odd cycles.Mathematical Programming, 29(1):28-40, 1984. · Zbl 0532.90074 · doi:10.1007/BF02591727
[21] F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on Computing, 4(3):221-225, 1975. · Zbl 0321.05120 · doi:10.1137/0204019
[22] J. M. Hochstein and K. Weihe. Maximums-t-flow withkcrossings in O(k3nlogn) time. In N. Bansal, K. Pruhs, and C. Stein, editors,Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pages 843-847. SIAM, 2007. · Zbl 1302.05072 · doi:10.1145/1283383.
[23] J. E. Hopcroft and R. E. Tarjan.Dividing a graph into triconnected components.SIAM Journal on Computing, 2(3):135-158, 1973. · Zbl 0281.05111
[24] R. M. Karp.Reducibility among combinatorial problems.In R. E. Miller and J. W. Thatcher, editors,Proceedings of a symposium on the Complexity of Computer Computations, New York, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972.URL: · Zbl 1467.68065
[25] K. Kawarabayashi. Graph isomorphism for bounded genus graphs in linear time.arXiv.org, abs/1511.02460, 2015. URL:
[26] K. Kawarabayashi and B. A. Reed. Computing crossing number in linear time. In D. S. Johnson and U. Feige, editors,Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC 2007, pages 382-390. ACM, 2007. · Zbl 1232.90339 · doi:10.1145/1250790.1250848
[27] Y. Kobayashi, Y. Kobayashi, S. Miyazaki, and S. Tamaki.An FPT algorithm for Max-Cut parameterized by crossing number.CoRR, abs/1904.05011, 2019. URL: · Zbl 1534.68177
[28] Y. Kobayashi, Y. Kobayashi, S. Miyazaki, and S. Tamaki. An improved fixed-parameter algorithm for Max-Cut parameterized by crossing number. InCombinatorial Algorithms - 30th International Workshop, IWOCA 2019, pages 327-338, 2019. · Zbl 1534.68177 · doi:10.1007/978-3-030-25005-8_27
[29] J. Kratochv´ıl.String graphs. II. recognizing string graphs is NP-hard. Journal of Combinatorial Theory, Series B, 52(1):67 - 78, 1991. · Zbl 0661.05054
[30] F. Liers and G. Pardella. Partitioning planar graphs: a fast combinatorial approach for Max-Cut.Computational Optimization and Applications, 51(1):323-344, 2012. · Zbl 1245.90107 · doi:10.1007/s10589-010-9335-5
[31] S. Mahajan and H. Ramesh.Derandomizing semidefinite programming based approximation algorithms.SIAM Journal on Computing, 28(5):1641-1663, 1995. · Zbl 0928.68055 · doi:10.1109/SFCS.1995.492473
[32] C. C. McGeoch.Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Synthesis Lectures on Quantum Computing. Morgan & Claypool Publishers, 2014. · doi:10.2200/S00585ED1V01Y201407QMC008
[33] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface.SIAM J. Discrete Math., 12:6-26, 1999. · Zbl 0931.05025
[34] G. I. Orlova and Y. G. Dorfman. Finding maximum cut in a graph.Engineering Cybernetics, 10(3):502-506, 1972. · Zbl 0247.05151
[35] J. Pach and G. T´oth. Graphs drawn with few crossings per edge.Combinatorica, 17(3):427-439, 1997. · Zbl 0902.05017 · doi:10.1007/BF01215922
[36] C. H. Papadimitriou and M. Yannakakis.Optimization, approximation, and complexity classes.Journal of Computer and System Sciences, 43(3):425 - 440, 1991. · Zbl 0765.68036 · doi:10.1016/0022-0000(91)90023-X
[37] N. Robertson and P. Seymour. Graph minors. XIII. the disjoint paths problem.Journal of Combinatorial Theory, Series B, 63(1):65 - 110, 1995. · Zbl 0823.05038 · doi:10.1006/jctb.1995.1006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.