×

Critical behavior of non-intersecting Brownian motions. (English) Zbl 1446.82062

Summary: We study \(n\) non-intersecting Brownian motions corresponding to initial configurations which have a vanishing density in the large \(n\) limit at an interior point of the support. It is understood that the point of vanishing can propagate up to a critical time, and we investigate the nature of the microscopic space-time correlations near the critical point and critical time. We show that they are described either by the Pearcey process or by the Airy line ensemble, depending on whether a simple integral related to the initial configuration vanishes or not. Since the Airy line ensemble typically arises near edge points of the macroscopic density, its appearance in the interior of the spectrum is surprising. We explain this phenomenon by showing that, even though there is no gap of macroscopic size near the critical point, there is with high probability a gap of mesoscopic size. Moreover, we identify a path which follows the \(\text{Airy}_2\) process.

MSC:

82C27 Dynamic critical phenomena in statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60J65 Brownian motion
15A18 Eigenvalues, singular values, and eigenvectors
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

References:

[1] Adler, M.; Delépine, J.; van Moerbeke, P., Dyson’s nonintersecting Brownian motions with a few outliers, Commun. Pure Appl. Math., 62, 3, 334-395 (2009) · Zbl 1166.60048
[2] Adler, M.; Johansson, K.; van Moerbeke, P., Double Aztec diamonds and the tacnode process, Adv. Math., 252, 518-571 (2014) · Zbl 1335.60177
[3] Ajanki, O., Erdős, L., Krüger, T.: Quadratic vector equations on complex upper half-plane (2015). arXiv:1506.05095 [math.PR] · Zbl 1450.15002
[4] Ajanki, O.; Erdős, L.; Krüger, T., Singularities of solutions to quadratic vector equations on the complex upper half-plane, Commun. Pure Appl. Math., 70, 9, 1672-1705 (2017) · Zbl 1419.15014
[5] Alt, J., Erdős, L., Krüger, T., Schröder, D.: Correlated random matrices: band rigidity and edge universality (2018). arXiv:1804.07744 [math.PR] · Zbl 1434.60017
[6] Anderson, GW; Guionnet, A.; Zeitouni, O., An Introduction to Random Matrices, Vol. 118. Cambridge Studies in Advanced Mathematics, 14-492 (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1184.15023
[7] Aptekarev, AI; Bleher, PM; Kuijlaars, ABJ, Large n limit of Gaussian random matrices with external source. II, Commun. Math. Phys., 259, 2, 367-389 (2005) · Zbl 1129.82014
[8] Biane, P., On the free convolution with a semi-circular distribution, Indiana Univ. Math. J., 46, 3, 705-718 (1997) · Zbl 0904.46045
[9] Bleher, PM; Kuijlaars, ABJ, Large n limit of Gaussian random matrices with external source. III. Double scaling limit, Commun. Math. Phys., 270, 2, 481-517 (2007) · Zbl 1126.82010
[10] Bleher, P.; Kuijlaars, ABJ, Large \(n\) limit of Gaussian random matrices with external source. I, Commun. Math. Phys., 252, 1-3, 43-76 (2004) · Zbl 1124.82309
[11] Borodin, A.; Kuan, J., Asymptotics of Plancherel measures for the infinite dimensional unitary group, Adv. Math., 219, 3, 894-931 (2008) · Zbl 1153.60058
[12] Borodin, A.; Rains, EM, Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys., 121, 3-4, 291-317 (2005) · Zbl 1127.82017
[13] Bourgade, P.; Erdős, L.; Yau, H-T, Edge universality of beta ensembles, Commun. Math. Phys., 332, 1, 261-353 (2014) · Zbl 1306.82010
[14] Brézin, E.; Hikami, S., Level spacing of random matrices in an external source, Phys. Rev. E (3), 58, Part A, 6, 7176-7185 (1998)
[15] Brézin, E.; Hikami, S., Spectral form factor in a random matrix theory, Phys. Rev. E (3), 55, 4, 4067-4083 (1997)
[16] Brézin, E.; Hikami, S., Universal singularity at the closure of a gap in a random matrix theory, Phys. Rev. E (3), 57, 4, 4140-4149 (1998)
[17] Capitaine, M.; Péché, S., Fluctuations at the edges of the spectrum of the full rank deformed GUE, Probab. Theory Relat. Fields, 165, 1-2, 117-161 (2016) · Zbl 1342.15029
[18] Cipolloni, G.; Erdős, L.; Krüger, T.; Schröder, D., Cusp universality for random matrices, II: the real symmetric case, Pure Appl. Anal., 1, 4, 615-707 (2019) · Zbl 1476.60012
[19] Claeys, T.; Kuijlaars, ABJ; Liechty, K.; Wang, D., Propagation of singular behavior for Gaussian perturbations of random matrices, Commun. Math. Phys., 362, 1, 1-54 (2018) · Zbl 1410.60011
[20] Claeys, T.; Neuschel, T.; Venker, M., Boundaries of sine kernel universality for Gaussian perturbations of Hermitian matrices, Random Mat. Theory Appl., 8, 3, 1950011 (2019) · Zbl 1423.60015
[21] Corwin, I., Kardar-Parisi-Zhang universality, Not. Am. Math. Soc., 63, 3, 230-239 (2016) · Zbl 1342.82098
[22] Corwin, I.; Hammond, A., Brownian Gibbs property for Airy line ensembles, Invent. Math., 195, 2, 441-508 (2014) · Zbl 1459.82117
[23] Dauvergne, D., Nica, M., Virág, B.: Uniform convergence to the Airy line ensemble (July 2019). arXiv:1907.10160 [math.PR]
[24] Dauvergne, D., Virág, B.: Basic properties of the Airy line ensemble (Dec. 2018) arXiv:1812.00311 [math.PR]
[25] Duse, E.; Johansson, K.; Metcalfe, A., The cusp-Airy process, Electron. J. Probab., 21, 57 (2016) · Zbl 1348.60008
[26] Duse, E.; Metcalfe, A., Universal edge uctuations of discrete interlaced particle systems, Ann. Math. Blaise Pascal, 25, 1, 75-197 (2018) · Zbl 1401.60010
[27] Dyson, FJ, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys., 3, 1191-1198 (1962) · Zbl 0111.32703
[28] Erdős, L., Krüger, T., Schröder, D.: Cusp universality for random matrices I: local law and the complex Hermitian case (Sept. 2018). arXiv:1809.03971 [math.PR]
[29] Erdős, L.; Péché, S.; Ramírez, JA; Schlein, B.; Yau, H-T, Bulk universality for Wigner matrices, Commun. Pure Appl. Math., 63, 7, 895-925 (2010) · Zbl 1216.15025
[30] Erdős, L., Yau, H.-T.: A Dynamical Approach to Random Matrix Theory. Vol. 28. Courant Lecture Notes in Mathematics, pp. 9+226. Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence (2017) · Zbl 1379.15003
[31] Eynard, B.; Mehta, ML, Matrices coupled in a chain. I. Eigenvalue correlations, J. Phys. A, 31, 19, 4449-4456 (1998) · Zbl 0938.15012
[32] Forrester, PJ; Nagao, T.; Honner, G., Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges, Nucl. Phys. B, 553, 3, 601-643 (1999) · Zbl 0944.82012
[33] Geudens, D.; Zhang, L., Transitions between critical kernels: from the tacnode kernel and critical kernel in the two-matrix model to the Pearcey kernel, Int. Math. Res. Not. IMRN, 14, 5733-5782 (2015) · Zbl 1341.60127
[34] Gorin, V.; Petrov, L., Universality of local statistics for noncolliding random walks, Ann. Probab., 47, 5, 2686-2753 (2019) · Zbl 1448.60106
[35] Grabiner, DJ, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices, Ann. Inst. H. Poincaré Probab. Stat., 35, 2, 177-204 (1999) · Zbl 0937.60075
[36] Johansson, K., Discrete polynuclear growth and determinantal processes, Commun. Math. Phys., 242, 1-2, 277-329 (2003) · Zbl 1031.60084
[37] Johansson, K., Non-colliding Brownian motions and the extended tacnode process, Commun. Math. Phys., 319, 1, 231-267 (2013) · Zbl 1268.60104
[38] Johansson, K.: On some special directed last-passage percolation models In: Integrable Systems and Random Matrices, vol. 458, pp. 333-346. Contemp. Math. Amer. Math. Soc., Providence (2008) · Zbl 1147.60330
[39] Johansson, K., The arctic circle boundary and the Airy process, Ann. Probab., 33, 1, 1-30 (2005) · Zbl 1096.60039
[40] Johansson, K., Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Commun. Math. Phys., 215, 3, 683-705 (2001) · Zbl 0978.15020
[41] Katori, M.; Tanemura, H., Markov property of determinantal processes with extended sine, Airy, and Bessel kernels, Markov Process. Relat. Fields, 17, 4, 541-580 (2011) · Zbl 1259.82065
[42] Katori, M.; Tanemura, H., Non-equilibrium dynamics of Dyson’s model with an infinite number of particles, Commun. Math. Phys., 293, 2, 469-497 (2010) · Zbl 1214.82061
[43] Kriecherbauer, T.; Schubert, K.; Schüler, K.; Venker, M., Global asymptotics for the Christoffel-Darboux kernel of random matrix theory, Markov Process. Relat. Fields, 21, Part 2, 3, 639-694 (2015) · Zbl 1384.60025
[44] Kriecherbauer, T.; Krug, J., A Pedestrian’s view on interacting particle systems, KPZ universality and random matrices, J. Phys. A, 43, 40, 403001 (2010) · Zbl 1202.82058
[45] Kriecherbauer, T.; Venker, M., Edge statistics for a class of repulsive particle systems, Probab. Theory Relat. Fields, 170, 3-4, 617-655 (2018) · Zbl 1456.60022
[46] Lee, JO; Schnelli, K., Edge universality for deformed Wigner matrices, Rev. Math. Phys., 27, 8, 1550018 (2015) · Zbl 1328.15051
[47] Lee, JO; Schnelli, K.; Stetler, B.; Yau, H-T, Bulk universality for deformed Wigner matrices, Ann. Probab., 44, 3, 2349-2425 (2016) · Zbl 1346.15037
[48] Liechty, K.; Wang, D., Nonintersecting Brownian bridges between reflecting or absorbing walls, Adv. Math., 309, 155-208 (2017) · Zbl 1407.60111
[49] Liechty, K.; Wang, D., Nonintersecting Brownian motions on the unit circle, Ann. Probab., 44, 2, 1134-1211 (2016) · Zbl 1342.60138
[50] Pastur, L.; Shcherbina, M., On the edge universality of the local eigenvalue statistics of matrix models, Mat. Fiz. Anal. Geom., 10, 3, 335-365 (2003) · Zbl 1064.60011
[51] Petrov, L., Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes, Probab. Theory Relat. Fields, 160, 3-4, 429-487 (2014) · Zbl 1315.60013
[52] Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process In: Dedicated to David Ruelle and Yasha Sinai on the Occasion of Their 65th birthdays, vol. 108(5-6), pp. 1071-1106 (2002) · Zbl 1025.82010
[53] Shcherbina, T., On universality of bulk local regime of the deformed Gaussian unitary ensemble, Zh. Mat. Fiz. Anal. Geom., 5, 4, 396-433 (2009)
[54] Shcherbina, T., On universality of local edge regime for the deformed Gaussian unitary ensemble, J. Stat. Phys., 143, 3, 455-481 (2011) · Zbl 1219.82094
[55] Soshnikov, A., Universality at the edge of the spectrum in Wigner random matrices, Commun. Math. Phys., 207, 3, 697-733 (1999) · Zbl 1062.82502
[56] Spohn, H.: The Kardar-Parisi-Zhang equation: a statistical physics perspective In: Stochastic Processes and Random Matrices, pp. 177-227. Oxford University Press, Oxford (2017) · Zbl 1403.35295
[57] Tracy, CA; Widom, H., The Pearcey process, Commun. Math. Phys., 263, 2, 381-400 (2006) · Zbl 1129.82031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.