×

Decomposition algorithm for the single machine scheduling polytope. (English) Zbl 1445.90034

Fouilhoux, Pierre (ed.) et al., Combinatorial optimization. Third international symposium, ISCO 2014, Lisbon, Portugal, March 5–7, 2014. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 8596, 280-291 (2014).
Summary: Given an \(n\)-vector \(p\) of processing times of jobs, the single machine scheduling polytope \(C\) arises as the convex hull of completion times of jobs when these are scheduled without idle time on a single machine. Given a point \(x\in C\), Carathéodory’s theorem implies that \(x\) can be written as convex combination of at most \(n\) vertices of \(C\). We show that this convex combination can be computed from \(x\) and \(p\) in time \(O (n^2)\), which is linear in the naive encoding of the output. We obtain this result using essentially two ingredients. First, we build on the fact that the scheduling polytope is a zonotope. Therefore, all of its faces are centrally symmetric. Second, instead of \(C\), we consider the polytope \(Q\) of half times and its barycentric subdivision. We show that the subpolytopes of this barycentric subdivison of \(Q\) have a simple, linear description. The final decomposition algorithm is in fact an implementation of an algorithm proposed by Grötschel, Lovász, and Schrijver applied to one of these subpolytopes.
For the entire collection see [Zbl 1319.90005].

MSC:

90B35 Deterministic scheduling theory in operations research
52B12 Special polytopes (linear programming, centrally symmetric, etc.)
68Q25 Analysis of algorithms and problem complexity
90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut

References:

[1] Cai, Y., Daskalakis, C., Weinberg, S.M.: Optimal multi-dimensional mechanism design: reducing revenue to welfare maximization. In: Proceedings of 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 130-139. IEEE (2012)
[2] Cunningham, WH, Testing membership in matroid polyhedra, J. Comb. Theory B, 36, 161-188 (1984) · Zbl 0522.90067 · doi:10.1016/0095-8956(84)90023-6
[3] Cunningham, WH, On submodular function minimization, Combinatorica, 5, 186-192 (1985) · Zbl 0647.05018 · doi:10.1007/BF02579361
[4] Fonlupt, J., Skoda, A.: Strongly polynomial algorithm for the intersection of a line with a polymatroid. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 69-85. Springer, Heidelberg (2009)
[5] Grötschel, M.; Lovász, L.; Schrijver, A., The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1, 169-197 (1981) · Zbl 0492.90056 · doi:10.1007/BF02579273
[6] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization: Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988) · Zbl 0634.05001
[7] Hoeksma, R., Manthey, B., Uetz, M.: Decomposition algorithm for the single machine scheduling polytope. Technical Report TR-CTIT-13-25, CTIT, University of Twente. http://eprints.eemcs.utwente.nl/24630/ · Zbl 1445.90034
[8] Hoeksma, R.; Uetz, M.; Goemans, M.; Correa, J., Two dimensional optimal mechanism design for a sequencing problem, Integer Programming and Combinatorial Optimization, 242-253 (2013), Heidelberg: Springer, Heidelberg · Zbl 1372.90047 · doi:10.1007/978-3-642-36694-9_21
[9] Iwata, S.; Fleischer, L.; Fujishige, S., A combinatorial strongly polynomial time algorithm for minimizing submodular functions, J. ACM, 48, 4, 761-777 (2001) · Zbl 1127.90402 · doi:10.1145/502090.502096
[10] Lee, C.W.: Subdivisions and triangulations of polytopes. In: Handbook of Discrete and Computational Geometry, chapter 17, 2nd edn. Chapman & Hall/CRC, Beca Raton (2004) · Zbl 0917.52012
[11] Munier, A.; Queyranne, M.; Schulz, AS; Bixby, RE; Boyd, EA; Ríos-Mercado, RZ, Approximation bounds for a general class of precedence constrained parallel machine scheduling problems, Integer Programming and Combinatorial Optimization, 367-382 (1998), Heidelberg: Springer, Heidelberg · Zbl 0911.90215 · doi:10.1007/3-540-69346-7_28
[12] Phillips, C.; Stein, C.; Wein, J.; Sack, J-R; Akl, SG; Dehne, F.; Santoro, N., Scheduling jobs that arrive over time, Algorithms and Data Structures, 86-97 (1995), Heidelberg: Springer, Heidelberg · Zbl 1502.68371 · doi:10.1007/3-540-60220-8_53
[13] Queyranne, M., Structure of a simple scheduling polyhedron, Math. Program., 58, 1, 263-285 (1993) · Zbl 0778.90031 · doi:10.1007/BF01581271
[14] Queyranne, M., Schulz, A.S.: Polyhedral approaches to machine scheduling. Preprint 408-1994, TU Berlin (1994)
[15] Schrijver, A., A combinatorial algorithm minimizing submodular functions in strongly polynomial time, J. Comb. Theory B, 80, 346-355 (2000) · Zbl 1052.90067 · doi:10.1006/jctb.2000.1989
[16] Yasutake, S.; Hatano, K.; Kijima, S.; Takimoto, E.; Takeda, M.; Asano, T.; Nakano, S.; Okamoto, Y.; Watanabe, O., Online linear optimization over permutations, Algorithms and Computation, 534-543 (2011), Heidelberg: Springer, Heidelberg · Zbl 1350.68291 · doi:10.1007/978-3-642-25591-5_55
[17] Ziegler, GM, Lectures on Polytopes. Graduate Texts in Mathematic (1995), New York: Springer, New York · Zbl 0823.52002 · doi:10.1007/978-1-4613-8431-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.