×

State occupation probabilities in non-Markov models. (English) Zbl 1442.62216

Let \(U=U(t)\), \(t\in[0,\infty)\) be a cadlag process with the state space \(\{1,\ldots, d\}\). Let \(\overrightarrow{p}(t)=(p_1(t), \ldots, p_d(t)\) be the vector of the state occupation probabilities \(p_i(t)=\mathbb{P}(U(t)=i)\) and \(P(s,t)=\{P_{ik}(s,t)\}\) be a transition \(d\times d\) matrix with conditional probabilities \(P_{ik}(s,t)=\mathbb{P}(U(t)=k\,|\,U(s)=i)\).
The author of the paper establishes the consistency of the Aalen-Johansen estimator [O. O. Aalen and S. Johansen, Scand. J. Stat., Theory Appl. 5, No. 3, 141–150 (1978; Zbl 0383.62058)] for the state occupation probabilities by using a new method. This new method is based on a simple identity for the state probabilities and on properties of additive and multiplicative transforms of the special interval functions.

MSC:

62N02 Estimation in survival analysis and censored data
62N05 Reliability and life testing
62F12 Asymptotic properties of parametric estimators
62F40 Bootstrap, jackknife and other resampling methods

Citations:

Zbl 0383.62058

References:

[1] Aalen, O. O.; Johansen, S., An Empirical Transition Matrix for Non-Homogeneous Markov Chains Based on Censored Observations, Scand. J. Statist., 5, 3, 141-150 (1978) · Zbl 0383.62058
[2] Aalen, O. O.; Borgan, Ø.; Fekjær, H., Covariate Adjustment of Event Histories Estimated from Markov Chains: The Additive Approach, Biometrics, 57, 4, 993-1001 (2001) · Zbl 1209.62247 · doi:10.1111/j.0006-341X.2001.00993.x
[3] Andersen, P. K.; Borgan, Ø.; Gill, R. D.; Keiding, N., Statistical Models Based on Counting Processes (1993), New York: Springer-Verlag, New York · Zbl 0769.62061
[4] Datta, S.; Satten, G. A., Validity of the Aalen—Johansen Estimators of Stage Occupation Probabilities and Nelson—Aalen Estimators of Integrated Transition Hazards for non-Markov Models, Statist. Probab. Lett., 55, 4, 403-411 (2001) · Zbl 0998.62072 · doi:10.1016/S0167-7152(01)00155-9
[5] Dudley, R. M.; Norvaiša, R., Concrete Functional Calculus (2011), New York: Springer, New York · Zbl 1218.46003
[6] Gill, R. D.; Johansen, S., A Survey of Product-Integration with a View toward Application in Survival Analysis, Ann. Statist., 18, 4, 1501-1555 (1990) · Zbl 0718.60087 · doi:10.1214/aos/1176347865
[7] Glidden, D. V., Robust Inference for Event Probabilities with Non-Markov Event Data, Biometrics, 58, 2, 361-368 (2002) · Zbl 1209.62047 · doi:10.1111/j.0006-341X.2002.00361.x
[8] Jepsen, P.; Vilstrup, H.; Andersen, P. K., The Clinical Course of Cirrhosis: the Importance of Multistate Models and Competing Risks Analysis, Hepatology, 62, 1, 292-302 (2015) · doi:10.1002/hep.27598
[9] Keiding, N.; Klein, J. P.; Horowitz, M. M., Multi-State Models and Outcome Prediction in Bone Marrow Transplantation, Statistics in Medicine, 20, 12, 1871-1885 (2001) · doi:10.1002/sim.810
[10] M. Overgaard, “Counting Processes in p-Variation with Applications to Recurrent Events”, https://arxiv.org/abs/1903.04296, unpublished manuscript (2019).
[11] M. Overgaard and S. N. Hansen, “On the Assumption of Independent Right Censoring”, https://arxiv.org/abs/1905.02508, unpublished manuscript (2019). · Zbl 07607021
[12] Putter, H.; Fiocco, M.; Geskus, R. B., Tutorial in Biostatistics: Competing Risks and Multi-State Models, Statistics in Medicine, 26, 11, 2389-2430 (2007) · doi:10.1002/sim.2712
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.