×

Periodic solutions for a prescribed mean curvature equation with multiple delays. (English) Zbl 1442.34112

Summary: We study the existence of periodic solutions for the one-dimensional prescribed mean curvature delay equation \((d/dt)(x'(t) / \sqrt{1 + (x'(t))^2}) + \sum_{i=1}^n a_i (t)g(x(t-\tau_i (t))) = p (t)\). By using Mawhin’s continuation theorem, a new result is obtained. Furthermore, the nonexistence of periodic solution for the equation is investigated as well.

MSC:

34K13 Periodic solutions to functional-differential equations

References:

[1] Bergner, M., On the Dirichlet problem for the prescribed mean curvature equation over general domains, Differential Geometry and Its Applications, 27, 3, 335-343 (2009) · Zbl 1171.53009 · doi:10.1016/j.difgeo.2009.03.002
[2] Rey, O., Heat flow for the equation of surfaces with prescribed mean curvature, Mathematische Annalen, 291, 1, 123-146 (1991) · Zbl 0761.58052 · doi:10.1007/BF01445195
[3] Amster, P.; Mariani, M. C., The prescribed mean curvature equation for nonparametric surfaces, Nonlinear Analysis. Theory, Methods & Applications, 52, 4, 1069-1077 (2003) · Zbl 1029.53070 · doi:10.1016/S0362-546X(02)00105-0
[4] Li, W.; Liu, Z., Exact number of solutions of a prescribed mean curvature equation, Journal of Mathematical Analysis and Applications, 367, 2, 486-498 (2010) · Zbl 1206.34038 · doi:10.1016/j.jmaa.2010.01.055
[5] Pan, H., One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Analysis. Theory, Methods & Applications, 70, 2, 999-1010 (2009) · Zbl 1159.34314 · doi:10.1016/j.na.2008.01.027
[6] Pan, H.; Xing, R., Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II, Nonlinear Analysis. Theory, Methods & Applications, 74, 11, 3751-3768 (2011) · Zbl 1248.34016 · doi:10.1016/j.na.2011.03.020
[7] Amster, P.; Mariani, M. C., The prescribed mean curvature equation for nonparametric surfaces, Nonlinear Analysis. Theory, Methods & Applications, 52, 4, 1069-1077 (2003) · Zbl 1029.53070 · doi:10.1016/S0362-546X(02)00105-0
[8] Benevieri, P.; do Ó, J. M.; de Medeiros, E. S., Periodic solutions for nonlinear systems with mean curvature-like operators, Nonlinear Analysis. Theory, Methods & Applications, 65, 7, 1462-1475 (2006) · Zbl 1106.34024 · doi:10.1016/j.na.2005.10.024
[9] Bonheure, D.; Habets, P.; Obersnel, F.; Omari, P., Classical and non-classical positive solutions of a prescribed curvature equation with singularities, Rendiconti dell’Instituto di Matematica dell’Università di Trieste, 39, 63-85 (2007) · Zbl 1160.34015
[10] Bonheure, D.; Habets, P.; Obersnel, F.; Omari, P., Classical and non-classical solutions of a prescribed curvature equation, Journal of Differential Equations, 243, 2, 208-237 (2007) · Zbl 1136.34023 · doi:10.1016/j.jde.2007.05.031
[11] Habets, P.; Omari, P., Positive solutions of an indefinite prescribed mean curvature problem on a general domain, Advanced Nonlinear Studies, 4, 1, 1-13 (2004) · Zbl 1137.35035
[12] Habets, P.; Omari, P., Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Communications in Contemporary Mathematics, 9, 5, 701-730 (2007) · Zbl 1153.34015 · doi:10.1142/S0219199707002617
[13] del Pino, M.; Guerra, I., Ground states of a prescribed mean curvature equation, Journal of Differential Equations, 241, 1, 112-129 (2007) · Zbl 1187.35117 · doi:10.1016/j.jde.2007.06.010
[14] Brubaker, N. D.; Pelesko, J. A., Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Analysis. Theory, Methods & Applications, 75, 13, 5086-5102 (2012) · Zbl 1251.34055 · doi:10.1016/j.na.2012.04.025
[15] Pan, H.; Xing, R., Sub- and supersolution methods for prescribed mean curvature equations with Dirichlet boundary conditions, Journal of Differential Equations, 254, 3, 1464-1499 (2013) · Zbl 1268.35069 · doi:10.1016/j.jde.2012.10.025
[16] Pan, H.; Xing, R., A note on the nonexistence of solutions for prescribed mean curvature equations on a ball, Nonlinear Analysis. Theory, Methods & Applications, 74, 18, 7437-7445 (2011) · Zbl 1235.35144 · doi:10.1016/j.na.2011.07.063
[17] Pan, H.; Xing, R., Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, Nonlinear Analysis. Theory, Methods & Applications, 74, 4, 1234-1260 (2011) · Zbl 1218.34020 · doi:10.1016/j.na.2010.09.063
[18] Pan, H.; Xing, R., Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to MEMS models, Nonlinear Analysis. Real World Applications, 13, 5, 2432-2445 (2012) · Zbl 1253.35174 · doi:10.1016/j.nonrwa.2012.02.012
[19] Pan, H.; Xing, R., Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II, Nonlinear Analysis. Theory, Methods & Applications, 74, 11, 3751-3768 (2011) · Zbl 1248.34016 · doi:10.1016/j.na.2011.03.020
[20] Zhang, X.; Feng, M., Exact number of solutions of a one-dimensional prescribed mean curvature equation with concave-convex nonlinearities, Journal of Mathematical Analysis and Applications, 395, 1, 393-402 (2012) · Zbl 1250.34020 · doi:10.1016/j.jmaa.2012.05.053
[21] Benevieri, P.; do Ó, J. M.; de Medeiros, E. S., Periodic solutions for nonlinear systems with mean curvature-like operators, Nonlinear Analysis. Theory, Methods & Applications, 65, 7, 1462-1475 (2006) · Zbl 1106.34024 · doi:10.1016/j.na.2005.10.024
[22] Feng, M., Periodic solutions for prescribed mean curvature Liénard equation with a deviating argument, Nonlinear Analysis. Real World Applications, 13, 3, 1216-1223 (2012) · Zbl 1256.34056 · doi:10.1016/j.nonrwa.2011.09.015
[23] Cai, J.; Lou, B., Periodic traveling waves of a mean curvature equation in high dimensional cylinders, Applied Mathematics and Computation, 217, 22, 9267-9277 (2011) · Zbl 1225.35137 · doi:10.1016/j.amc.2011.04.004
[24] Benevieri, P.; do Ó, J. M.; de Medeiros, E. S., Periodic solutions for nonlinear equations with mean curvature-like operators, Applied Mathematics Letters, 20, 5, 484-492 (2007) · Zbl 1146.34034 · doi:10.1016/j.aml.2006.06.007
[25] Lu, S., On the existence of positive periodic solutions for neutral functional differential equation with multiple deviating arguments, Journal of Mathematical Analysis and Applications, 280, 2, 321-333 (2003) · Zbl 1034.34084 · doi:10.1016/S0022-247X(03)00049-0
[26] Gaines, R. E.; Mawhin, J. L., Coincidence Degree, and Nonlinear Differential Equations. Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics, 568 (1977), Berlin, Germany: Springer, Berlin, Germany · Zbl 0339.47031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.