×

On the stab number of rectangle intersection graphs. (English) Zbl 1442.05187

Summary: We introduce the notion of stab number and exact stab number of rectangle intersection graphs, otherwise known as graphs of boxicity at most 2. A graph \(G\) is said to be a \(k\)-stabbable rectangle intersection graph, or \(k\)-SRIG for short, if it has a rectangle intersection representation in which \(k\) horizontal lines can be chosen such that each rectangle is intersected by at least one of them. If there exists such a representation with the additional property that each rectangle intersects exactly one of the \(k\) horizontal lines, then the graph \(G\) is said to be a \(k\)-exactly stabbable rectangle intersection graph, or \(k\)-ESRIG for short. The stab number of a graph \(G\), denoted by \(\mathrm{stab}(G)\), is the minimum integer \(k\) such that \(G\) is a \(k\)-SRIG. Similarly, the exact stab number of a graph \(G\), denoted by \(\mathrm{estab}(G)\), is the minimum integer \(k\) such that \(G\) is a \(k\)-ESRIG.
In this work, we study the stab number and exact stab number of some subclasses of rectangle intersection graphs. A lower bound on the stab number of rectangle intersection graphs in terms of its pathwidth and clique number is shown. Tight upper bounds on the exact stab number of split graphs with boxicity at most 2 and block graphs are also given. We show that for \(k\leq 3,k\)-SRIG is equivalent to \(k\)-ESRIG and for any \(k\geq 10\), there is a tree which is a \(k\)-SRIG but not a \(k\)-ESRIG.
We also develop a forbidden structure characterization for block graphs that are 2-ESRIG and trees that are 3-ESRIG, which lead to polynomial-time recognition algorithms for these two classes of graphs. These forbidden structures are natural generalizations of asteroidal triples. Finally, we construct examples to show that these forbidden structures are not sufficient to characterize block graphs that are 3-SRIG or trees that are \(k\)-SRIG for any \(k\geq 4\).

MSC:

05C76 Graph operations (line graphs, products, etc.)
05C62 Graph representations (geometric and intersection representations, etc.)
05C85 Graph algorithms (graph-theoretic aspects)

References:

[1] Adiga, A.; Bhowmick, D.; Chandran, LS, The hardness of approximating the boxicity, cubicity and threshold dimension of a graph, Discret. Appl. Math., 158, 16, 1719-1726 (2010) · Zbl 1208.05140 · doi:10.1016/j.dam.2010.06.017
[2] Adiga, A.; Chandran, LS; Sivadasan, N., Lower bounds for boxicity, Combinatorica, 34, 6, 631-655 (2014) · Zbl 1340.05193 · doi:10.1007/s00493-011-2981-0
[3] Agarwal, PK; Van Kreveld, M.; Suri, S., Label placement by maximum independent set in rectangles, Comput. Geom., 11, 3-4, 209-218 (1998) · Zbl 0921.68100 · doi:10.1016/S0925-7721(98)00028-5
[4] Asplund, E.; Grünbaum, B., On a coloring problem, Mathematica Scandinavica, 8, 1, 181-188 (1960) · Zbl 0095.17002 · doi:10.7146/math.scand.a-10607
[5] Babu, J., Basavaraju, M., Chandran, L.S., Rajendraprasad, D., Sivadasan, N.: Approximating the cubicity of trees. arXiv:1402.6310 (2014)
[6] Bhore, S.K., Chakraborty, D., Das, S., Sen, S.: On a Special Class of Boxicity 2 Graphs. In: Algorithms and Discrete Applied Mathematics: First International Conference, pp. 157-168 (2015) · Zbl 1435.05145
[7] Chan, TM, A note on maximum independent sets in rectangle intersection graphs, Inf. Process. Lett., 89, 1, 19-23 (2004) · Zbl 1178.68674 · doi:10.1016/j.ipl.2003.09.019
[8] Chandran, LS; Francis, MC; Sivadasan, N., Boxicity and maximum degree, J. Comb. Theory, Ser. B, 98, 2, 443-445 (2008) · Zbl 1136.05045 · doi:10.1016/j.jctb.2007.08.002
[9] Chandran, LS; Mathew, R.; Rajendraprasad, D., Upper bound on cubicity in terms of boxicity for graphs of low chromatic number, Discret. Math., 339, 2, 443-446 (2016) · Zbl 1327.05100 · doi:10.1016/j.disc.2015.09.007
[10] Chandran, LS; Sivadasan, N., Boxicity and treewidth, J Comb Theory Ser B, 97, 5, 733-744 (2007) · Zbl 1121.05091 · doi:10.1016/j.jctb.2006.12.004
[11] Corneil, DG; Olariu, S.; Stewart, L., The LBFS structure and recognition of interval graphs, SIAM J. Discret. Math., 23, 4, 1905-1953 (2009) · Zbl 1207.05131 · doi:10.1137/S0895480100373455
[12] Correa, J.R., Feuilloley, L., Soto, J.A.: Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line. In: Latin American Symposium on Theoretical Informatics, pp. 35-46. Springer (2014) · Zbl 1407.68505
[13] Cozzens, MB; Roberts, FS, Computing the boxicity of a graph by covering its complement by cointerval graphs, Discret. Appl. Math., 6, 3, 217-228 (1983) · Zbl 0524.05059 · doi:10.1016/0166-218X(83)90077-X
[14] Diestel, R., Graph Theory. Electronic library of mathematics (2006), Berlin: Springer, Berlin
[15] Ellis, J.; Warren, R., Lower bounds on the pathwidth of some grid-like graphs, Discret. Appl. Math., 156, 5, 545-555 (2008) · Zbl 1137.05069 · doi:10.1016/j.dam.2007.02.006
[16] Erlebach, T., Van Leeuwen, E.J.: PTAS for Weighted Set Cover on Unit Squares. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 166-177. Springer (2010) · Zbl 1304.68214
[17] Esperet, L., Joret, G.: Boxicity of graphs on surfaces. Graphs and Combinatorics, 1-11 (2013) · Zbl 1267.05083
[18] Imai, H.; Asano, T., Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane, J. Algorithm., 4, 4, 310-323 (1983) · Zbl 0548.68067 · doi:10.1016/0196-6774(83)90012-3
[19] Kratochvíl, J., A special planar satisfiability problem and a consequence of its NP-completeness, Discret. Appl. Math., 52, 3, 233-252 (1994) · Zbl 0810.68083 · doi:10.1016/0166-218X(94)90143-0
[20] Kratochvíl, J.; Nešetřil, J., Independent set and clique problems in intersection-defined classes of graphs, Comment. Math. Univ. Carolinae, 31, 1, 85-93 (1990) · Zbl 0727.05056
[21] Lekkerkerker, C.; Boland, J., Representation of a finite graph by a set of intervals on the real line, Fundam. Math., 51, 1, 45-64 (1962) · Zbl 0105.17501 · doi:10.4064/fm-51-1-45-64
[22] Suderman, M., Pathwidth and layered drawings of trees, Int. J. Comput. Geom. Appl., 14, 3, 203-225 (2004) · Zbl 1080.68087 · doi:10.1142/S0218195904001433
[23] Yannakakis, M., The complexity of the partial order dimension problem, SIAM J. Algebr. Discret. Methods, 3, 3, 351-358 (1982) · Zbl 0516.06001 · doi:10.1137/0603036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.