×

Borsuk number for planar convex bodies. (English) Zbl 1440.52001

Let \(C\) be a bounded set in the Euclidean space \(\mathbb{R}^n\). The Borsuk number \(\alpha(C)\) of \(C\) is the minimal number of subsets with strictly smaller diameters into which \(C\) can be decomposed. The original question by Borsuk asks if \(\alpha(C)\leq n+1\) for any \(C\). The answer is positive for \(n=2\) and \(n=3\), and for any dimension when \(C\) is a smooth or centrally symmetric convex body. For the general case, the least-dimension with known negative answer is \(n=64\), but it has not been proved to be optimal. In \(\mathbb{R}^2\), \(\alpha(C)=3\) iff the completion of \(C\) by a constant width set with the same diameter is unique, and \(\alpha(C)=2\) iff there exists a segment \(s\) in \(C\) whose length is not the diameter of \(C\) and \(s\) intersects every diameter segment of \(C\).
The Introduction of this paper is very clear and interesting and includes a complete review of the historical results of this topic in the Euclidean space. The authors consider the graph \(G_C(V,E)\), where the vertices \(V\) are the end points of the diameter segments of \(C\), and \(E\) are the diameter segments of \(C\). They study Borsuk numbers for centrally symmetric planar convex bodies in Section 3, and prove that \(\alpha(C)=2\) iff \(V\neq \partial C\). Finally the following known fact is obtained: the Euclidean ball is the unique centrally symmetric planar convex body with Borsuk number equals to 3. Section 4 is devoted to general compact sets in \(\mathbb{R}^n\) (without the assumption of convexity), and they obtain that \(\alpha(C)=2\) iff \(G_C\) is bipartite and \(V\) can be decomposed into two subsets \(V_R\) and \(V_B\) such that the intersection of the closures of \(V_R\) and \(V_B\) is empty. Finally some examples and figures of planar convex sets with Borsuk numbers equal to three are presented.
B. Grünbaum [Bull. Res. Council Israel, Sect. F 7, 25–30 (1957; Zbl 0086.15202)] studied the Borsuk numbers of sets with respect to a metric distinct from the Euclidean, and determined the Borsuk numbers of sets in the plane equipped with the \(L_{\infty}\) norm. The problem was solved for arbitrary normed planes by V. G. Boltyanskij and V. P. Soltan [Math. Notes 22, 839–844 (1978; Zbl 0418.52004)]. The \(k\)-fold Borsuk number is a generalization of Borsuk’s problem [M. Hujter and Z. Lángi, Isr. J. Math. 199, Part A, 219–239 (2014; Zbl 1304.52013)]. It could be interesting to apply the theory of graph in order to improve the results with non Euclidean metrics and with the extension to \(k\)-fold Borsuk number.

MSC:

52A10 Convex sets in \(2\) dimensions (including convex curves)

References:

[1] Boltyanskii, V., The partitioning of plane figures into parts of smaller diameter, Colloq. Math., 21, 253-263 (1970) · Zbl 0198.27102 · doi:10.4064/cm-21-2-253-263
[2] Boltyanskii, V.; Gohberg, I., The Decomposition of Figures into Smaller Parts (1980), Chicago: University of Chicago Press, Chicago · Zbl 0502.52001
[3] Bondarenko, AV, On Borsuk’s conjecture for two-distance sets, Discrete Comput. Geom., 51, 509-515 (2014) · Zbl 1298.52027 · doi:10.1007/s00454-014-9579-4
[4] Bonnesen, T.; Fenchel, W., Theorie der Konvexen Körper (1934), Berlin: Springer, Berlin · JFM 60.0673.01
[5] Borsuk, K., Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math., 20, 177-190 (1933) · JFM 59.0560.01 · doi:10.4064/fm-20-1-177-190
[6] Bowers, PL, The Borsuk dimension of a graph and Borsuk’s partition conjecture for finite sets, Graphs Combin., 6, 207-222 (1990) · Zbl 0744.05057 · doi:10.1007/BF01787572
[7] Cañete, A.; Segura Gomis, S., Bisections of centrally symmetric planar convex bodies minimizing the maximum relative diameter, Mediterr. J. Math., 16, 151 (2019) · Zbl 1430.52008 · doi:10.1007/s00009-019-1411-1
[8] Croft, HT; Falconer, KJ; Guy, RK, Unsolved Problems in Geometry (1991), Berlin: Springer, Berlin · Zbl 0748.52001
[9] Dol’nikov, VL, Some properties of graphs of diameters, Discrete Comput. Geom., 24, 293-299 (2000) · Zbl 0965.05063 · doi:10.1007/s004540010036
[10] Eggleston, HG, Covering a three-dimensional set with sets of smaller diameter, J. London Math. Soc., 30, 11-24 (1955) · Zbl 0065.15304 · doi:10.1112/jlms/s1-30.1.11
[11] Frankl, P.; Pach, J.; Reiher, C.; Rödl, V., Borsuk and Ramsey Type Questions in Euclidean space, Connections in Discrete Mathematics (2018), Cambridge: Cambridge University Press, Cambridge · Zbl 1400.05257
[12] Frankl, P.; Wilson, RM, Intersection theorems with geometric consequences, Combinatorica, 1, 357-368 (1981) · Zbl 0498.05048 · doi:10.1007/BF02579457
[13] Grey, J., Weissbach, B.: Ein weiteres Gegenbeispiel zur Borsukschen Vermutung. Univ. Magdeburg, Fakultät für Mathematik, Preprint 25 (1997)
[14] Grünbaum, B., A simple proof of Borsuk’s conjecture in three dimensions, Proc. Cambridge Philos. Soc., 53, 776-778 (1957) · Zbl 0073.39201 · doi:10.1017/S0305004100032849
[15] Hadwiger, H., Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers, Comment. Math. Helv., 19, 72-73 (1946) · Zbl 0063.01852 · doi:10.1007/BF02565947
[16] Heppes, A., On the partitioning of three-dimensional point-sets into sets of smaller diameter, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 7, 413-416 (1957) · Zbl 0101.14802
[17] Hinrichs, A., Spherical codes and Borsuk’s conjecture, Discrete Math., 243, 253-256 (2002) · Zbl 1010.52004 · doi:10.1016/S0012-365X(01)00202-3
[18] Hinrichs, A.; Richter, C., New sets with large Borsuk numbers, Discrete Math., 270, 137-147 (2003) · Zbl 1028.52012 · doi:10.1016/S0012-365X(02)00833-6
[19] Jenrich, T., Brouwer, A.E.: A 64-dimensional counterexample to Borsuk’s conjecture. Electron. J. Combin. 21, Paper 4.29 (2014) · Zbl 1311.51016
[20] Kahn, J.; Kalai, G., A counterexample to Borsuk’s conjecture, Bull. Amer. Math. Soc., 29, 60-62 (1993) · Zbl 0786.52002 · doi:10.1090/S0273-0979-1993-00398-7
[21] Kołodziejczyk, D., Some remarks on the Borsuk conjecture, Comment. Math. Prace Mat., 28, 77-86 (1988) · Zbl 0755.52002
[22] Kołodziejczyk, K., Borsuk covering and planar sets with unique completion, Discrete Math., 122, 235-244 (1993) · Zbl 0792.52002 · doi:10.1016/0012-365X(93)90298-8
[23] Lang, S., Algebra, Graduate Texts in Mathematics 211 (2002), Berlin: Springer, Berlin · Zbl 0984.00001
[24] Larman, D.: Open problem 6, Convexity and Graph Theory, North-Holland Math. Stud., 87. Ann. Discrete Math., 20, p. 336 (1984)
[25] Miori, C.; Peri, C.; Gomis, S. Segura, On fencing problems, J. Math. Anal. Appl., 300, 464-476 (2004) · Zbl 1080.52002 · doi:10.1016/j.jmaa.2004.06.050
[26] Nilli, A., On Borsuk’s problem, Jerusalem Combinatorics ’93, Contemp. Math., 178, 209-210 (1994) · Zbl 0816.52001 · doi:10.1090/conm/178/01901
[27] Pál, J.: Über ein elementares Variationsproblem. Math.-Fys. Medd., Danske Vid. Selsk. 3 (1920) · JFM 47.0684.01
[28] Perkal, J., Sur la subdivision des ensembles en parties de diamètre inférieur, Colloq. Math., 1, 45 (1947)
[29] Pikhurko, O.: Borsuk’s conjecture fails in dimensions 321 and 322, preprint. (2002), arXiv:math/0202112
[30] Raigorodskii, AM, On dimensionality in the Borsuk problem, Russian Math. Surveys, 52, 1324-1325 (1997) · Zbl 0934.52005 · doi:10.1070/RM1997v052n06ABEH002184
[31] Rissling, AS, The problem of Borsuk in three-dimensional spaces of constant curvature, Ukrain. Geometr. Sb, 11, 78-83 (1971) · Zbl 0239.50007
[32] Weissbach, B., Sets with large Borsuk number, Beitr. Algebra Geom., 41, 417-423 (2000) · Zbl 0973.52011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.