×

Appell’s hypergeometric series over finite fields. (English) Zbl 1440.33012

The ordinary Appell series arise as products of two \({}_2F_1\) series and are series in two variables. The coefficients are quotients of products of Pochhanner symbols (‘rising factorials’).
There are several differerent types of generalization to series over a finite field (discussed in the Introduction of the paper) and the authors consider finite field analogues purely in term of Gaussian sums.
Let \(\mathbb{F}_q\) be the finite field with \(q\) elements, \(q=p^r,\,r\geq 1, p\) a prime and let \(\widehat{\mathbb{F}_q^{\times}}\) be the group of all multiplicative characters on \(\mathbb{F}_q^{\times}\).
With \(A,A',B,B',C,C'\) multiplicative characters on \(\mathbb{F}_q\) the authors define for \(x,y\in\mathbb{F}_q\) the following series: \[\begin{matrix} F_1(A;B,B';C;x,y)^{\ast}=\\ \frac{1}{(q-1)^2}\sum_{\chi,\psi\in\widehat{\mathbb{F}_q^{\times}}}\frac{g(A\xi\psi)g(B\chi)g(B'\psi)g(\overline{C\chi\psi})g(\overline{\chi})g(\overline{\psi})}{g(A)g(B)g(B')g(\overline{C})}\chi(x)\psi(y), \end{matrix}\] \[\begin{matrix} F_2(A;B,B';C;x,y)^{\ast}=\\ \frac{1}{(q-1)^2}\sum_{\chi,\psi\in\widehat{\mathbb{F}_q^{\times}}}\frac{g(A\xi\psi)g(B\chi)g(B'\psi)g(\overline{C\chi})g(\overline{C'\psi})g(\overline{\chi})g(\overline{\psi})}{g(A)g(B)g(B')g(\overline{C})g(\overline{C'})}\chi(x)\psi(y), \end{matrix}\] \[\begin{matrix} F_3(A;B,B';C;x,y)^{\ast}=\\ \frac{1}{(q-1)^2}\sum_{\chi,\psi\in\widehat{\mathbb{F}_q^{\times}}}\frac{g(A\chi)g(A'\psi)g(B\chi)g(B'\psi)g(\overline{C\chi\psi})g(\overline{\chi})g(\overline{\psi})}{g(A)g(A')g(B)g(B')g(\overline{C})}\chi(x)\psi(y), \end{matrix}\] \[\begin{matrix} F_4(A;B,B';C;x,y)^{\ast}=\\ \frac{1}{(q-1)^2}\sum_{\chi,\psi\in\widehat{\mathbb{F}_q^{\times }}}\frac{g(A\chi\psi)g(B\chi\psi)g(\overline{C\chi})g(\overline{C'\psi})g(\overline{\chi})g(\overline{\psi})}{g(A)g(B)g(\overline{C})g(\overline{C'})}\chi(x)\psi(y). \end{matrix}\] Here for \(\chi\in\widehat{\mathbb{F}_q^{\times}}\) the Gauss sum \(g(\chi)\) is defined by \[g(\chi)=\sum_{x\in\mathbb{F}_q}\,\chi(x)\theta(x)\] with \[\theta(\alpha)=\zeta_p^{\hbox{tr}(\alpha)},\ \hbox{tr}(\alpha)=\alpha+\alpha^p+\alpha^{p^2}+\cdots\alpha^{p^{r-1}}\] and \(\zeta_p\) a fixed primitive root of unity in \(\mathbb{C}\).
The main results of the paper now are (\(\varepsilon\) is the trivial character):
Theorem 1.2. Let \(A,B,B',C\in\widehat{\mathbb{F}_q^{\times}}\) be such that \(A\not= C, \overline{A}\not=\overline{C}B'\) and \(B'\not=\varepsilon\). If \(x,y\in\mathbb{F}_q\) and \(y\not= 1\), then \[\begin{matrix} F_1(A;B,B';C;x,y)^{\ast}=B'(1-y)F_3\left(A,\overline{A}C;B,B';C,x,\frac{y}{y-1}\right)^{\ast}\\+\frac{g(B\overline{A})g(A\overline{C})\overline{A}(x)A\overline{C}(y)\overline{AB'}C(1-y)}{q \left(\begin{matrix}B'\\\overline{A}C\end{matrix}\right)g(B)g(\overline{C})}. \end{matrix}\]
Theorem 1.3. Let \(A,B,B',C\in\widehat{\mathbb{F}_q^{\times}}\) be such that \(A\not= B\) and \(A,B,B'\not=\varepsilon\). If \(x,y\in\mathbb{F}_q^{\times}\) and \(y\not= 1\), then \[F_2\left(A;B,B';C,A;x,\frac{-y}{1-y}\right)^{\ast}=B'(1-y)F_1(B;A\overline{B'},B';C,x,x(1-y))^{\ast}-\frac{\overline{A}\left(\frac{y}{1-y}\right)}{q \left(\begin{matrix}B'\\A\end{matrix}\right)}.\]
Theorem 1.4. Let \(A,B,C\in\widehat{\mathbb{F}_q^{\times}}\) be such that \(B\not=\varepsilon,A\not= B,A\not= C\) and \(B\not= C\). For \(y\not= 1\) we have \[\begin{matrix} \varepsilon (x-y)F_3\left(A,C\overline{A};B,\overline{B}C;C;x,\frac{y}{y-1}\right)^{\ast}\\ =\varepsilon (xy)\overline{A}(1-x)\overline{B}C(1-y) {}_2F_1\left(\begin{matrix}A,&\overline{B}C\\ & C\end{matrix}\right|\left.\frac{y-x}{1-x}\right)^{\ast}\\ -\varepsilon (x-y)\frac{\overline{B}(-x)B\overline{C}(-y)\overline{B}C(1-y)}{q\left(\begin{matrix}A \\ C\end{matrix}\right)}\\ -\varepsilon(x-y)\frac{g(\overline{A}B)g(A\overline{C})\overline{A}(x)A\overline{C}(y)\overline{A}C(1-y)}{q\left(\begin{matrix}\overline{B}C\\\overline{A}C\end{matrix}\right)g(B)g(\overline{C})}. \end{matrix}\] (Here, the \({}_2F_1\) is the D. McCarthy’s finite field hypergeometric function [Finite Fields Appl. 18, No. 6, 1133–1147 (2012; Zbl 1276.11198)].)
Theorem 1.5. Let \(A,A',B, B',C,C'\in\widehat{\mathbb{F}_q^{\times}}\) and \(x,y\in\mathbb{F}_q\).
(1) If \(A\not= C\) and \(B,B'\not=\varepsilon\), then \[F_1(A;B,B';C;x,y){\ast}=\frac{1}{q}\left(\begin{matrix}A \\ C\end{matrix}\right)^{-1} F_1^q(A;B,B';C;x,y).\] (2) If \(A\not=\varepsilon, B\not= C\) and \(B'\not= C'\), then \[F_2(A;B,B';C,C';x,y)^{\ast}=\frac{1}{q^2}\left(\begin{matrix}B \\ C\end{matrix}\right)^{-1} \left(\begin{matrix}B' \\ C'\end{matrix}\right)^{-1}F_2^q(A;B,B';C;x,y).\] (3) If \(A,A'\not=\varepsilon,B\not= \overline{B'}\) and \(\overline{B}\not= B'\overline{C}\), then \[F_3(A,A';B,B';C;x,y)^{\ast}=\frac{B'(-1)}{q^2}\left(\begin{matrix}C\overline{BB'} \\ C\end{matrix}\right)^{-1} \left(\begin{matrix}B \\ \overline{B'}\end{matrix}\right)^{-1}F_3^q(A,A';B,B';C;x,y).\] (Here, the \(F_1^q,F_2^q\) and \(F_3^q\) are finite field Appel series, defined using integral representations of Appell series; cf. [B. He, “A finite field analogue for Appell series \(F_3\)”, Preprint, arXiv:1704.03509; B. He et al., Finite Fields Appl. 48, 289–305 (2017; Zbl 1373.33023); L. Li et al., Int. J. Number Theory 14, No. 3, 727–738 (2018; Zbl 1390.33026)].

MSC:

33C65 Appell, Horn and Lauricella functions
11T24 Other character sums and Gauss sums
Full Text: DOI

References:

[1] Bailey, W., Generalized Hypergeometric Series (Cambridge University Press, Cambridge, 1935). · JFM 61.0406.01
[2] Berndt, B., Evans, R. and Williams, K., Gauss and Jacobi Sums, (John Wiley & Sons, New York, 1998). · Zbl 0906.11001
[3] J. Fuselier, L. Long, R. Ramakrishna, H. Swisher and F. Tu, Hypergeometric functions over finite fields, preprint (2016); arXiv:1510.02575v2. · Zbl 1443.11254
[4] Greene, J., Hypergeometric functions over finite fields, Trans. Amer. Math. Soc.301(1) (1987) 77-101. · Zbl 0629.12017
[5] B. He, A finite field analogue for Appell series \(F_3\), preprint (2017); arXiv:1704.03509v1.
[6] He, B., Li, L. and Zhang, R., An Appell series over finite fields, Finite Fields Appl.48(11) (2017) 289-305. · Zbl 1373.33023
[7] Katz, N., Exponential Sums and Differential Equations, , Vol. 124 (Princeton University Press, Princeton, NJ, 1990). · Zbl 0731.14008
[8] Li, L., Li, X. and Mao, R., Appell series \(F_1\) over finite fields, Int. J. Number Theory14(3) (2018) 727-738. · Zbl 1390.33026
[9] McCarthy, D., Transformations of well-poised hypergeometric functions over finite fields, Finite Fields Appl.18(6) (2012) 1133-1147. · Zbl 1276.11198
[10] Tripathi, M. and Barman, R., A finite field analogue of the Appell series \(F_4\), Res. Number Theory4 (2018) 35. · Zbl 1428.33028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.