×

Directed unions of local monoidal transforms and GCD domains. (English) Zbl 1440.13012

Summary: Let \((R,\mathfrak{m})\) be a regular local ring of dimension \(d\geq2\). A local monoidal transform of \(R\) is a ring of the form \(R_1=R [\frac{\mathfrak{p}}{x}]_{\mathfrak{m}_1}\), where \(x\in\mathfrak{p}\) is a regular parameter, \(\mathfrak{p}\) is a regular prime ideal of \(R\) and \(\mathfrak{m}_1\) is a maximal ideal of \(R[\frac{\mathfrak{p}}{x}]\) lying over \(\mathfrak{m}\). In this paper, we study some features of the rings \(S= \cup_{n \geq 0}^\infty R_n\) obtained as infinite directed union of iterated local monoidal transforms of \(R\). In order to study when these rings are GCD domains, we also provide results in the more general setting of directed unions of GCD domains.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial)
13G05 Integral domains
13H05 Regular local rings

References:

[1] Abhyankar, S., On the valuations centered in a local domain, Amer. J. Math.78 (1956) 321-348. · Zbl 0074.26301
[2] Abhyankar, S., Resolution of singularities of algebraic surfaces, Algebraic Geometry (Interest. Colloq., TATA Inst Fund Res., Bombay, 1968), pp. 1-11, Oxford Univ. Press, London. · Zbl 0194.51805
[3] Anderson, D. D., GCD domains, Gauss’ lemma, and contents of polynomials, in book Non-Noetherian Commutative Ring Theory, Chapman, S. and Glaz, S., eds. (Kluwer, Boston, 2000), pp. 1-32. · Zbl 1024.13006
[4] Arnold, J. and Sheldon, P., Integral domains that satisfy Gauss’s lemma, Michigan Math. J.22 (1975) 39-51. · Zbl 0314.13008
[5] Fontana, M., Topologically defined classes of commutative rings, Ann. Mat. Pura Appl.123(4) (1980) 331-355. · Zbl 0443.13001
[6] Fontana, M., Huckaba, J. and Papick, I., Prüfer Domains (Marcel Dekker, New York, 1997). · Zbl 0861.13006
[7] Gabelli, S. and Houston, E., Coherentlike conditions in pullbacks, Michigan Math. J.44(1) (1997) 99-123. · Zbl 0896.13007
[8] Gabelli, S. and Houston, E., Ideal theory in pullbacks, in Non-Noetherian Commutative Ring Theory, Chapman, S. and Glaz, S., eds. (Kluwer, Dordrecht, 2000), pp. 199-227. · Zbl 1094.13501
[9] Gilmer, R., Multiplicative Ideal Theory (Marcel Dekker, New York, 1972). · Zbl 0248.13001
[10] A. Grothendieck, Eléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) cohomologique des faisceaux cohérents, I. Inst. Hautes Études Sci. Publ. Math. No. 11 (1961), 167 pp.
[11] Guerrieri, L., Heinzer, W., Olberding, B. and Toeniskoetter, M., Directed unions of local quadratic transforms of a regular local ring and pullbacks, in Rings, Polynomials, and Modules, Fontana, M., Frisch, S., Glaz, S., Tartarone, F. and Zanardo, P., eds. (Springer, Cham, 2017), pp. 257-280. · Zbl 1401.13069
[12] Heinzer, W., Loper, K. A., Olberding, B., Schoutens, H. and Toeniskoetter, M., Ideal theory of infinite directed unions of local quadratic transforms, J. Algebra474 (2017) 213-239. · Zbl 1365.13036
[13] Heinzer, W., Olberding, B. and Toeniskoetter, M., Asymptotic properties of infinite directed unions of local quadratic transforms, J. Algebra479 (2017) 216-243. · Zbl 1431.13028
[14] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math.41 (1940) 852-896.
[15] Houston, E. and Taylor, J., Arithmetic properties in pullbacks, J. Algebra310 (2007) 235-260. · Zbl 1117.13024
[16] Kaplansky, I., Commutative Rings (Allyn and Bacon, Boston, 1970). · Zbl 0203.34601
[17] Matsumura, H., Commutative Ring Theory (Cambridge University Press, Cambridge, 1986). · Zbl 0603.13001
[18] Shannon, D., Monoidal transforms of regular local rings, Amer. J. Math.95 (1973) 294-320. · Zbl 0271.14003
[19] Zafrullah, M., On a property of pre-Schreier domains, Comm. Algebra15 (1987) 1895-1920. · Zbl 0634.13004
[20] Zariski, O., Reductions of the singularities of algebraic three dimensional varieties, Ann. of Math. (2)40 (1939) 639-689. · Zbl 0021.25303
[21] Zariski, O., Foundations of a general theory of birational correspondences, Trans. Amer. Math. Soc.53 (1943) 490-542. · Zbl 0061.33004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.