×

A phase-field approach to fracture coupled with diffusion. (English) Zbl 1439.74249

Summary: A phase-field model is proposed to describe cracking and its coupling with diffusion. While our specific interest is on diffusion of chloride ions in hardened cement paste, the proposed model has more general applicability to any porous material potentially developing cracks. The model is formulated in Gurtin’s framework and first applied to a two-dimensional plate subject to mechanical and diffusion boundary conditions, where an analytical solution can be found. Several more complex examples solved with the finite element method demonstrate the ability of the model to capture the effect of cracking on the local and on the macroscopically measured diffusivities. Experimental results from the literature are used to calibrate the relationship between local diffusivity and phase-field parameter. The calibrated relationship is applied to a unit cell problem, which serves as the first step towards the coupled diffusion-mechanical analysis at the mesoscale of concrete.

MSC:

74N25 Transformations involving diffusion in solids
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Ann, K. Y.; Song, H. W., Chloride threshold level for corrosion of steel in concrete, Corros. Sci., 49, 4113-4133 (2007)
[2] Nilenius, F.; Larsson, F.; Lundgren, K.; Runesson, K., Mesoscale modelling of crack-induced diffusivity in concrete, Comput. Mech., 55, 359-370 (2015) · Zbl 1398.74383
[3] Šavija, B.; Pacheco, J.; Schlangen, E., Lattice modeling of chloride diffusion in sound and cracked concrete, Cement Concr. Comps., 42, 30-40 (2013)
[4] Ingraffea, A. R.; Saouma, V., Numerical modeling of discrete crack propagation in reinforced and plain concrete, Fract. Mech. Concr. Struct. Appl. Numer. Calculation, 4, 171-225 (1985)
[5] Gálvez, J. C.; Červenka, J.; Cendón, D. A.; Saouma, V., A discrete crack approach to normal/shear cracking of concrete, Cement and Concrete Research, 32, 1567-1585 (2002)
[6] Eftekhari, M.; Ardakani, S. H.; Mohammadi, S., An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete, Theor. Appl. Fract. Mech., 72, 64-75 (2014)
[7] Schlangen, E.; van Mier, J. G.M., Simple lattice model for numerical simulation of fracture of concrete materials and structures, Mater. Struct., 25, 534-542 (1992)
[8] Jirásek, M., Nonlocal models for damage and fracture: comparison of approaches, Int. J. Solids Struct., 35, 4133-4145 (1998) · Zbl 0930.74054
[9] Peerlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; Geers, M. G.D., Gradient-enhanced damage modelling of concrete fracture, Cohesive-Friction. Mater., 3, 323-342 (1998)
[10] Rots, J. G., Computational modeling of concrete fracture (1988), Delft University of Technology: Delft University of Technology Delft, The Netherlands, (Ph.D. thesis)
[11] de Borst, R., Some recent developments in computational modelling of concrete fracture, Int. J. Fract., 86, 5-36 (1997)
[12] Loehnert, S.; Mueller-Hoeppe, D. S.; Wriggers, P., 3D corrected XFEM approach and extension to finite deformation theory, Internat. J. Numer. Methods Engrg., 86, 431-452 (2010) · Zbl 1216.74026
[13] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383-405 (2014) · Zbl 1398.74270
[14] Wu, T.; Wriggers, P., Multiscale diffusion-thermal-mechanical cohesive zone model for concrete, Comput. Mech., 55, 999-1016 (2015) · Zbl 1329.74076
[15] Liu, J. X.; Zhao, Z. Y.; Deng, S. C.; Liang, N. G., Numerical investigation of crack growth in concrete subjected to compression by the generalized beam lattice model, Comput. Mech., 43, 277-295 (2009) · Zbl 1162.74504
[16] Grassl, P., A lattice approach to model flow in cracked concrete, Cement Concr. Comps., 31, 7, 454-460 (2009)
[17] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 1209-1229 (2009) · Zbl 1426.74257
[18] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778 (2010) · Zbl 1231.74022
[19] Bourdin, B.; Francfort, G. A.; Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826 (2000) · Zbl 0995.74057
[20] Kuhn, C.; Müller, R., A phase field model for fracture, Proc. Appl. Math. Mech., 8, 10223-10224 (2008) · Zbl 1394.74176
[21] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Verhoosel, C. V., A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Engrg., 273, 100-118 (2014) · Zbl 1296.74098
[22] Miehe, C.; Schänzel, L. M.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[23] Miehe, C.; Hofacker, M.; Schänzel, L. M.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[24] Miehe, C.; Welschinger, F.; Hofacker, M., A phase field model of electromechanical fracture, J. Mech. Phys. Solids, 58, 1716-1740 (2010) · Zbl 1200.74123
[25] J.J. Timothy, G. Meschke, Modeling electrolyte diffusion in cracked cementitious materials using cascade continuum micromechanics and phase-field models. 1, pages 1-4, in: Proceedings of VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-8, Spain, 2013.; J.J. Timothy, G. Meschke, Modeling electrolyte diffusion in cracked cementitious materials using cascade continuum micromechanics and phase-field models. 1, pages 1-4, in: Proceedings of VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-8, Spain, 2013.
[26] Schneider, D.; Selzer, M.; Bette, J.; Rementeria, I.; Vondrous, A.; Hoffmann, M. J.; Nestler, B., Phase-field modeling of diffusion coupled crack propagation processes, Adv. Energy Mater., 16, 142-146 (2014)
[27] Ismail, M.; Toumi, A.; François, R.; Gagné, R., Effect of crack opening on the local diffusion of chloride in cracked mortar samples, Cement and Concrete Research, 38, 1106-1111 (2008)
[28] Yi, S. T.; Hyun, T. Y.; Kim, J. K., The effects of hydraulic pressure and crack width on water permeability of penetration crack-induced concrete, Constr. Build. Mater., 25, 2576-2583 (2011)
[29] Jang, S. Y.; Kim, B. S.; Oh, B. H., Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests, Cement and Concrete Research, 41, 9-19 (2011)
[30] Akhavan, A.; Rajabipour, F., Evaluating ion diffusivity of cracked cement paste using electrical impedance spectroscopy, Mater. Struct., 46, 697-708 (2013)
[31] Mu, S.; De Schutter, G.; Ma, B. G., Non-steady state chloride diffusion in concrete with different crack densities, Mater. Struct., 46, 123-133 (2013)
[32] Rodriguez, O. G.; Hooton, R. D., Influence of cracks on chloride ingress into concrete, ACI Mater. J., 100, 2, 120-126 (2003)
[33] Marsavina, L.; Audenaert, K.; De Schutter, G.; Faur, N.; Marsavina, D., Experimental and numerical determination of the chloride penetration in cracked concrete, Constr. Build. Mater., 23, 264-274 (2009)
[34] Gu, C. P.; Ye, G.; Sun, W., A review of the chloride transport properties of cracked concrete: experiments and simulations, J. Zhejiang Univ. Sci., 16, 2, 81-92 (2015)
[35] Brühwiler, E.; Wittmann, F. H., The wedge splitting test, a new method of performing stable fracture mechanics tests, Eng. Fract. Mech., 35, 117-125 (1990)
[36] Malvar, L. J.; Warren, G. E., Fracture energy for three-point-bend tests on single-edge-notched beams: proposed evaluation, Materials and Structure, 20, 440-447 (1987)
[37] Yoon, I. S.; Schlangen, E., Experimental examination on chloride penetration through micro-crack in concrete, KSCE J. Civ. Eng., 18, 1, 188-198 (2014)
[38] Tognazzi, C., Couplage fissuration-dégradation chimique dans les matériaux cimentaires: caractérisation et modélisation (1998), INSA de Toulouse: INSA de Toulouse Toulouse, France, (Ph.D. thesis)
[39] Akhavan, A.; Shafaatian, S. M.H.; Rajabipour, F., Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars, Cement and Concrete Research, 42, 313-320 (2012)
[40] Sosdean, C.; Marsavina, L.; De Schutter, G., Experimental and numerical determination of the chloride penetration in cracked mortar specimens, Eur. J. Environ. Civ. Eng., 20, 231-249 (2015)
[41] M. Henry, T. Sugiyama, I.S. Darma, Visualization and quantification of solute diffusivity in cracked concrete by X-Ray CT, in: Proceedings of 4th International Conference on the Durability of Concrete Structures, Purdue University, West Lafayette, IN, USA, 2014, pp. 205-211.; M. Henry, T. Sugiyama, I.S. Darma, Visualization and quantification of solute diffusivity in cracked concrete by X-Ray CT, in: Proceedings of 4th International Conference on the Durability of Concrete Structures, Purdue University, West Lafayette, IN, USA, 2014, pp. 205-211.
[42] Darma, I. S.; Sugiyama, T.; Promentilla, M. A.B., Application of X-ray CT to study diffusivity in cracked concrete through the observation of tracer transport, J. Adv. Concr. Technol., 11, 266-281 (2013)
[43] Gang, L., Effect of cracks on the transport characteristics of cracked concrete (2014), University of Saskatchewan: University of Saskatchewan Saskatoon, Canada, (Ph.D. thesis)
[44] Halamickova, P.; Detwiler, R. J.; Bentz, D. P.; Garboczi, E. J., Water permeability and chloride ion diffusion in portland cement mortars: Relationship to sand content and critical pore diameter, Cement and Concrete Research, 25, 790-802 (1995)
[45] Ye, H. L.; Tian, Y.; Jin, N. G.; Jin, X. Y.; Fu, C. Q., Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions, Constr. Build. Mater., 47, 66-79 (2013)
[46] Pour-Ghaz, M.; Rajabipour, F.; Couch, J.; Weiss, J., Numerical and experimental assessment of unsaturatd fluid transport in saw-cut (notched) concrete elements, ACI Spec. Publ., 266, 73-86 (2009)
[47] Samaha, H. R.; Hover, K. C., Influence of microcracking on the mass transport properties of concrete, ACI Mater. J., 89, 416-424 (1992)
[48] Locoge, P.; Massat, M.; Ollivier, J. P.; Richet, C., Ion diffusion in microcracked concrete, Cement and Concrete Research, 22, 431-438 (1992)
[49] Marchand, J.; Gérard, B.; Delagrave, A., Ion transport mechanisms in cement based materials and composites, Mater. Sci. Concr. (American Ceramic Society), 5, 307-400 (1998)
[50] Boulfiza, M.; Sakai, K.; Banthia, N.; Yoshida, H., An integrated analysis of reinforced concrete beam subjected to both loading and chloride ion ingress, Proc. Japan Concr.Inst., 21-23, 79-84 (1999)
[51] Gérard, B.; Marchand, J., Influence of cracking on the diffusion properties of cement-based materials: Part I: Influence of continuous cracks on the steady-state regime, Cement and Concrete Research, 30, 37-43 (2000)
[52] Li, C. Q.; Zheng, J. J.; Shao, L., New solution for prediction of chloride ingress in reinforced concrete flexural members, ACI Mater. J., 100, 4, 319-325 (2003)
[53] Bentz, D. P.; Garboczi, E. J.; Yang, L.; Martys, N.; Sakulich, A. R.; Weiss, W. J., Modeling of the influence of transverse cracking on chloride penetration into concrete, Cement Concr. Comps., 38, 65-74 (2013)
[54] Jones, S.; Martys, N.; Lu, Y.; Bentz, D., Simulation studies of methods to delay corrosion and increase service life for cracked concrete exposed to chlorides, Cement Concr. Comps., 58, 59-69 (2015)
[55] Du, X. L.; Jin, L.; Zhang, R. B., Chloride diffusivity in saturated cement paste subjected to external mechanical loadings, Ocean Eng., 95, 1-10 (2015)
[56] Y. Lu, E.J. Garboczi, D.P. Bentz, J. Davis, Modeling of chloride transport in cracked concrete: a 3-D image-based microstructure simulation, in: Proceedings of COMSOL Conference, Boston, USA, 2012, pp. 1-15.; Y. Lu, E.J. Garboczi, D.P. Bentz, J. Davis, Modeling of chloride transport in cracked concrete: a 3-D image-based microstructure simulation, in: Proceedings of COMSOL Conference, Boston, USA, 2012, pp. 1-15.
[57] Kamali-Bernard, S.; Bernard, F., Effect of tensile cracking on diffusivity of mortar: 3D numerical modelling, Comput. Mater. Sci., 47, 178-185 (2009)
[58] Wang, L. C.; Ueda, T., Mesoscale modelling of the chloride diffusion in cracks and cracked concrete, J. Adv. Concr. Technol., 9, 241-249 (2011)
[59] Liu, L.; Chen, H. S.; Sun, W.; Ye, G., Microstructure-based modeling of the diffusivity of cement paste with micro-cracks, Constr. Build. Mater., 38, 1107-1116 (2013)
[60] Qian, Z. W., Multiscale modeling of fracture processes in cementitious materials (2012), Delft University of Technology: Delft University of Technology Delft, the Netherlands, (Ph.D. thesis)
[61] Xiang, T. Y.; Zhao, R. D., Reliability evaluation of chloride diffusion in fatigue damaged concrete, Eng. Struct., 29, 7, 1539-1547 (2007)
[62] Gurtin, M. E.; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua (2010), Cambridge University Press
[63] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[64] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[65] Gerasimov, T.; De Lorenzis, L., A line search assisted monolithic approach for phase-field computing of brittle fracture, Comput. Methods Appl. Mech. Engrg. (2016), in press · Zbl 1439.74349
[66] Hoover, C. G.; Ulm, F. J., Experimental chemo-mechanics of early-age fracture properties of cement paste, Cement and Concrete Research, 75, 42-52 (2015)
[67] M.R. Taha, E. Soliman, M. Sheyka, A. Reinhardt, M. Al-Haik, Fracture toughness of hydrated cement paste using nanoindentation, in: Proceedings of the International Conferences on Fracture Mechanics of Concrete and Concrete Structures, Seoul, 2010, pp. 105-111.; M.R. Taha, E. Soliman, M. Sheyka, A. Reinhardt, M. Al-Haik, Fracture toughness of hydrated cement paste using nanoindentation, in: Proceedings of the International Conferences on Fracture Mechanics of Concrete and Concrete Structures, Seoul, 2010, pp. 105-111.
[68] Hain, M.; Wriggers, P., Numerical homogenization of hardened cement paste, Comput. Mech., 42, 197-212 (2008) · Zbl 1304.74057
[69] C. Feist, W. Kerber, H. Lehar, G. Hofstetter, A comparative study of numerical models for concrete cracking, in: European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, 2004, pp. 1-19.; C. Feist, W. Kerber, H. Lehar, G. Hofstetter, A comparative study of numerical models for concrete cracking, in: European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, 2004, pp. 1-19.
[70] M.Z. Zhang, G. Ye, K. van Breugel, Microstructure-based simulation of time-dependent chloride diffusivity in saturated cement paste. in: K. van Breugel, G. Ye, Y. Yuan (Eds.), Service Lift Design for Infrastructure, Delft, The Netherlands, 2010, pp. 167-174.; M.Z. Zhang, G. Ye, K. van Breugel, Microstructure-based simulation of time-dependent chloride diffusivity in saturated cement paste. in: K. van Breugel, G. Ye, Y. Yuan (Eds.), Service Lift Design for Infrastructure, Delft, The Netherlands, 2010, pp. 167-174.
[71] Kuhn, C., Numerical and analytical investigation of a phase field model for fracture (2013), Technische Universität Kaiserslautern: Technische Universität Kaiserslautern Kaiserslautern, Germany, (Ph.D. thesis)
[72] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 1017-1040 (2015) · Zbl 1329.74018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.