×

A general lower bound on the weak Schur number. (English) Zbl 1437.11039

Garijo, Delia (ed.) et al., Discrete mathematics days 2018. Extended abstracts of the 11th “Jornadas de matemática discreta y algorítmica” (JMDA), Sevilla, Spain, June 27–29, 2018. Amsterdam: Elsevier. Electron. Notes Discrete Math. 68, 137-142 (2018).
Summary: For integers \(k\), \(n\) with \(k, n \ge 1\), the \(n\)-color weak Schur number\(W S_k(n)\) is defined as the least integer \(N\), such that for every \(n\)-coloring of the integer interval \([1, N]\), there exists a monochromatic solution \(x_1, \ldots, x_k, x_{k + 1}\) in that interval to the equation \(x_1 + x_2 + \ldots + x_k = x_{k + 1}\), with \(x_i \ne x_j\), when \(i \ne j\). We show a relationship between \(W S_k(n + 1)\) and \(W S_k(n)\) and a general lower bound on the \(W S_k(n)\) is obtained.
For the entire collection see [Zbl 1392.05001].

MSC:

11B75 Other combinatorial number theory

Software:

CBack

References:

[1] Baumert, L. D., Sum-free sets, J. P. L. Research Summary, 36, 10, 16-18, (1961)
[2] Blanchard, P. F.; Harary, F.; Reis, R., Partitions into sum-free sets, Electronic Journal of Combinatorial Numbers theory, 6, 1-10, (2006) · Zbl 1134.11312
[3] Boza, L.; Marín, J. M.; Revuelta, M. P.; Sanz, M. I., On the n-color weak Rado numbers for the equation \(x_1 + x_2 + \ldots + x_k + c = x_{k + 1}\), Experiment. Math., (2018), accepted 2017 · Zbl 1332.05011
[4] Eliahou, S.; Marín, J. M.; Revuelta, M. P.; Sanz, M. I., Weak Schur numbers and the search for G.W. Walker’s lost partitions, Computers and Mathematics with Applications, 63, 175-182, (2012) · Zbl 1238.11031
[5] Eliahou, S.; Fonlupt, C.; Fromentin, J.; Marion-Poty, V.; Robilliard, D.; Teytaud, F., Investigating Monte-Carlo methods on the weak Schur problem, Lecture Notes in Computer Science, vol. 7832, 191-201, (2013)
[6] Rafilipojaona, F. A., Nombres de Schur classiques et faibles, (2015), Universit Lille Nord-de-France, Ph. Thesis
[7] Fredricksen, H.; Sweet, M., Symmetric sum-free partitions and lower bounds for Schur numbers, The Electronic Journal of Combinatorics, 7:R32, (2000) · Zbl 0944.05093
[8] Helsgaun, K., Cback: A simple tool for backtrack programming in C, Softw. pract. exp., 25, 8, 905-934, (1995)
[9] M.J.H. Heule, Schur Number Five. Discrete Mathematics, preprint, 2017.; M.J.H. Heule, Schur Number Five. Discrete Mathematics, preprint, 2017.
[10] Rado, R., Some solved and unsolved problems in the theory of numbers, Math. Gaz., 25, 72-77, (1941)
[11] Sanz, M. I., Números de Schur y Rado, (2010), Universidad de Sevilla, Ph. Thesis
[12] M. Heule, http://www.st.ewi.tudelft.nl/sat/; M. Heule, http://www.st.ewi.tudelft.nl/sat/
[13] Schur, I., Uber die kongruenz \(x^m + y^m \equiv z^m(\text{mod} p)\), Jber. Deutsch. Math. Verein., 25, 114-117, (1916) · JFM 46.0193.02
[14] Walker, G. W., A problem in partitioning, The American Mathematical Monthly., 59, 253, (1952)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.