×

Robust randomized matchings. (English) Zbl 1436.91087

Summary: The following game is played on a weighted graph: Alice selects a matching \(M\) and Bob selects a number \(k\). Alice’s payoff is the ratio of the weight of the \(k\) heaviest edges of \(M\) to the maximum weight of a matching of size at most \(k\). If \(M\) guarantees a payoff of at least \(\alpha\) then it is called \(\alpha \)-robust. In [SIAM J. Discrete Math. 15, No. 4, 530–537 (2002; Zbl 1006.05051)] R. Hassin and S. Rubinstein gave an algorithm that returns a \(1 / \sqrt{ 2} \)-robust matching, which is best possible. We show that Alice can improve her payoff to 1/ln(4) by playing a randomized strategy. This result extends to a very general class of independence systems that includes matroid intersection, b-matchings, and strong 2-exchange systems. It also implies an improved approximation factor for a stochastic optimization variant known as the maximum priority matching problem and translates to an asymptotic robustness guarantee for deterministic matchings, in which Bob can only select numbers larger than a given constant. Moreover, we give a new LP-based proof of Hassin and Rubinstein’s bound.

MSC:

91B68 Matching models
91A43 Games involving graphs
05C57 Games on graphs (graph-theoretic aspects)

Citations:

Zbl 1006.05051

References:

[1] Bertsimas D, Nasrabadi E, Orlin JB (2016) On the power of randomization in network interdiction. Oper. Res. Lett. 44(1):114-120.Crossref, Google Scholar · Zbl 1408.91038 · doi:10.1016/j.orl.2015.11.005
[2] Calvillo G (1980) The concavity and intersection properties for integral polyhedra. Ann. Discrete Math. 8:221-228.Crossref, Google Scholar · Zbl 0473.52004 · doi:10.1016/S0167-5060(08)70877-X
[3] Disser Y, Klimm M, Megow N, Stiller S (2014) Packing a knapsack of unknown capacity. Portier N, Wilke T, eds. Proc. 31st Internat. Sympos. Theoret. Aspects Comput. Sci., STACS ’14, Leibniz Internat. Proc. Informatics, Vol. 25 (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Saarbrücken, Germany), 276-287.Google Scholar · Zbl 1359.90115
[4] Dütting P, Roughgarden T, Talgam-Cohen I (2014) Modularity and greed in double auctions. Proc. 15th ACM Conf. Econom. Comput., EC ’14, (ACM, New York), 241-258.Google Scholar
[5] Fujita R, Kobayashi Y, Makino K (2013) Robust matchings and matroid intersections. SIAM J. Discrete Math. 27(3):1234-1256.Crossref, Google Scholar · Zbl 1285.05136 · doi:10.1137/100808800
[6] Fukunaga T, Halldórsson MM, Nagamochi H (2008) Robust cost colorings. Proc. 19th Annual ACM-SIAM Sympos. Discrete Algorithms, SODA ’08 (SIAM, Philadelphia), 1204-1212.Google Scholar · Zbl 1192.90071
[7] Hassin R, Rubinstein S (2002) Robust matchings. SIAM J. Discrete Math. 15(4):530-537.Crossref, Google Scholar · Zbl 1006.05051 · doi:10.1137/S0895480198332156
[8] Hassin R, Segev D (2006) Robust subgraphs for trees and paths. ACM Trans. Algorithms 2(2):263-281.Crossref, Google Scholar · Zbl 1321.68506 · doi:10.1145/1150334.1150341
[9] Hausmann D, Korte B, Jenkyns TA (1980) Worst case analysis of greedy type algorithms for independence systems. Math. Programming Study 12:120-131.Crossref, Google Scholar · Zbl 0444.90070 · doi:10.1007/BFb0120891
[10] Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58(301):13-30.Crossref, Google Scholar · Zbl 0127.10602 · doi:10.1080/01621459.1963.10500830
[11] Kakimura N, Makino K (2013) Robust independence systems. SIAM J. Discrete Math. 27(3):1257-1273.Crossref, Google Scholar · Zbl 1290.68100 · doi:10.1137/120899480
[12] Kakimura N, Makino K, Seimi K (2012) Computing knapsack solutions with cardinality robustness. Japan J. Indust. Appl. Math. 29(3):469-483.Crossref, Google Scholar · Zbl 1258.68184 · doi:10.1007/s13160-012-0075-z
[13] Kobayashi Y, Takazawa K (2017) Randomized strategies for cardinality robustness in the knapsack problem. Theoret. Comput. Sci. 699:53-62.Crossref, Google Scholar · Zbl 1380.90237 · doi:10.1016/j.tcs.2016.12.019
[14] Mastin A, Jaillet P, Chin S (2015) Randomized minmax regret for combinatorial optimization under uncertainty. Algorithms and Computation, Lecture Notes in Computer Science, Vol. 9472 (Springer, New York), 491-501.Crossref, Google Scholar · Zbl 1472.68213 · doi:10.1007/978-3-662-48971-0_42
[15] Matuschke J, Skutella M, Soto JA (2015) Robust randomized matchings. Indyk P, ed. Proc. 26th Annual ACM-SIAM Sympos. Discrete Algorithms, SODA ’15 (SIAM, Philadelphia), 1904-1915.Google Scholar · Zbl 1371.05231
[16] Megow N, Mestre J (2013) Instance-sensitive robustness guarantees for sequencing with unknown packing and covering constraints. Proc. 4th Conf. Innovations in Theoret. Comput. Sci., ITCS ’13 (ACM, New York), 495-504.Google Scholar · Zbl 1361.68100
[17] Mestre J (2006) Greedy in approximation algorithms. Algorithms-ESA 2006, Lecture Notes in Computer Science, Vol. 4168 (Springer, New York), 528-539.Crossref, Google Scholar · Zbl 1131.68594 · doi:10.1007/11841036_48
[18] Schrijver A (2003) Combinatorial Optimization—Polyhedra and Efficiency (Springer, New York).Google Scholar · Zbl 1041.90001
[19] Soto JA (2014) A simple PTAS for weighted matroid matching on strongly base orderable matroids. Discrete Appl. Math. 164:406-412.Crossref, Google Scholar · Zbl 1288.05036 · doi:10.1016/j.dam.2012.10.019
[20] Ward J (2012) Oblivious and non-oblivious local search for combinatorial optimization. PhD thesis,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.